Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 862))

  • 4011 Accesses

Abstract

Transverse Ising systems with randomly frustrated interactions or random fields have an intriguing nature that a phase transition peculiar in randomly frustrated systems is driven by tunable thermal fluctuations as well as quantum fluctuations. The first part of Chap. 6 discusses transverse Ising spin glasses in great detail, where systems are characterised by randomly competing interactions and a uniform transverse field. It includes analytic and numerical studies of the Sherrington-Kirkpatrick model in a transverse field, numerical studies of the Edwards-Anderson model in a transverse field in two and three dimensions, and the mean field theory of Ising spin glasses with random p-body interactions in a transverse field. One of the interesting problem in quantum spin glasses is the stability of the state with replica symmetry breaking in quantum fluctuations. This problem is also mentioned. The second part of Chap. 6 focuses on the random field transverse Ising models. Phase diagrams at zero and finite temperatures are studied by the mean field theory. Appendices of this chapter include a brief note on the infinite-range vector (Heisenberg) spin glass model, mapping of the transverse Ising spin glass Hamiltonian to an effective classical Hamiltonian, mapping of random field Ising ferromagnet in a transverse field to a random Ising antiferromagnet in a longitudinal and transverse fields, and mathematical details of the replica method in transverse Ising spin glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharony, A.: Tricritical points in systems with random fields. Phys. Rev. B 18, 3318–3327 (1978). [6.7.1, 6.7.2]

    Article  ADS  Google Scholar 

  2. Ancona-Torres, C., Silevitch, D.M., Aeppli, G., Rosenbaum, T.F.: Quantum and classical glass transitions in LiHo x Y1−x F4. Phys. Rev. Lett. 101, 057201 (2008). [1.1, 1.3]

    Article  ADS  Google Scholar 

  3. Belanger, D., Young, A.: The random field Ising model. J. Magn. Magn. Mater. 100(1–3), 272–291 (1991). [1.3, 6.7.1, 6.7.2]

    Article  ADS  Google Scholar 

  4. Benyoussef, A., Ez-Zahraouy, H.: The bond-diluted spin-1 transverse Ising model with random longitudinal field. Phys. Status Solidi (b) 179(2), 521–530 (1993). [6.7.2]

    Article  ADS  Google Scholar 

  5. Benyoussef, A., Ez-Zahraouy, H., Saber, M.: Magnetic properties of a transverse spin-1 Ising model with random longitudinal field. Phys. A, Stat. Mech. Appl. 198(3–4), 593–605 (1993). [6.7.2]

    Article  Google Scholar 

  6. Bernardi, L.W., Campbell, I.A.: Critical exponents in Ising spin glasses. Phys. Rev. B 56, 5271–5275 (1997). [6.1]

    Article  ADS  Google Scholar 

  7. Binder, K., Young, A.P.: Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986). [6.1, 6.4, 6.5, 6.A.3]

    Article  ADS  Google Scholar 

  8. Bray, A.J., Moore, M.A.: Replica theory of quantum spin glasses. J. Phys. C, Solid State Phys. 13(24), L655 (1980). [6.2, 6.3, 6.A.1]

    Article  ADS  Google Scholar 

  9. Bray, A.J., Moore, M.A.: Scaling theory of the random-field Ising model. J. Phys. C, Solid State Phys. 18(28), L927 (1985). [6.7.1]

    Article  MathSciNet  ADS  Google Scholar 

  10. Bricmont, J., Kupiainen, A.: Lower critical dimension for the random-field Ising model. Phys. Rev. Lett. 59, 1829–1832 (1987). [6.7.1]

    Article  MathSciNet  ADS  Google Scholar 

  11. Brout, R., Müller, K., Thomas, H.: Tunnelling and collective excitations in a microscopic model of ferroelectricity. Solid State Commun. 4(10), 507–510 (1966). [1.1, 1.2, 4.5, 6.7.2, 7.1.1]

    Article  ADS  Google Scholar 

  12. Büttner, G., Usadel, K.D.: Replica-symmetry breaking for the Ising spin glass in a transverse field. Phys. Rev. B 42, 6385–6395 (1990). [6.3, 6.5, 8.1]

    Article  ADS  Google Scholar 

  13. Büttner, G., Usadel, K.D.: Stability analysis of an Ising spin glass with transverse field. Phys. Rev. B 41, 428–431 (1990). [6.2, 6.5, 6.3]

    Article  ADS  Google Scholar 

  14. Cardy, J.L.: Random-field effects in site-disordered Ising antiferromagnets. Phys. Rev. B 29, 505–507 (1984). [6.7.1]

    Article  ADS  Google Scholar 

  15. Cesare, L.D., Lukierska-Walasek, K., Rabuffo, I., Walasek, K.: On the p-spin interaction transverse Ising spin-glass model without replicas. Phys. A, Stat. Mech. Appl. 214(4), 499–510 (1995). [1.3, 6.6]

    Article  Google Scholar 

  16. Chakrabarti, B.K.: Critical behavior of the Ising spin-glass models in a transverse field. Phys. Rev. B 24, 4062–4064 (1981). [1.1, 1.3, 6.2, 6.4, 6.8]

    Article  ADS  Google Scholar 

  17. Chandra, A.K., Inoue, J.i., Chakrabarti, B.K.: Quantum phase transition in a disordered long-range transverse Ising antiferromagnet. Phys. Rev. E 81, 021101 (2010). [6.3]

    Article  ADS  Google Scholar 

  18. Chowdhury, D.: Spin Glass and Other Frustrated Systems. World Scientific, Singapore (1986). [6.1, 6.5, 6.A.3]

    Google Scholar 

  19. Crisanti, A., Rieger, H.: Random-bond Ising chain in a transverse magnetic field: a finite-size scaling analysis. J. Stat. Phys. 77, 1087–1098 (1994). [6.4]

    Article  ADS  Google Scholar 

  20. Derrida, B.: Random-energy model: limit of a family of disordered models. Phys. Rev. Lett. 45, 79–82 (1980). [3.4.2, 6.6, 8.5.3.2]

    Article  MathSciNet  ADS  Google Scholar 

  21. Derrida, B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B 24, 2613–2626 (1981). [6.6, 8.5.3.2]

    Article  MathSciNet  ADS  Google Scholar 

  22. Dobrosavljević, V., Stratt, R.M.: Mean-field theory of the proton glass. Phys. Rev. B 36, 8484–8496 (1987). [6.3]

    Article  ADS  Google Scholar 

  23. Dobrosavljevic, V., Thirumalai, D.: 1/p expansion for a p-spin interaction spin-glass model in a transverse field. J. Phys. A, Math. Gen. 23(15), L767 (1990). [6.6, 8.5.3.2]

    Article  ADS  Google Scholar 

  24. dos Santos, R.R., dos Santos, R.Z., Kischinhevsky, M.: Transverse Ising spin-glass model. Phys. Rev. B 31, 4694–4697 (1985). [6.2]

    Article  ADS  Google Scholar 

  25. Dutta, A., Chakrabarti, B.K., Stinchcombe, R.B.: Phase transitions in the random field Ising model in the presence of a transverse field. J. Phys. A, Math. Gen. 29(17), 5285 (1996). [6.7.2]

    Article  ADS  MATH  Google Scholar 

  26. Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F, Met. Phys. 5(5), 965 (1975). [6.1]

    Article  ADS  Google Scholar 

  27. Fedorov, Y.V., Shender, E.F.: Quantum spin glasses in the Ising model with a transverse field. JETP Lett. 43, 681 (1986). [6.3]

    ADS  Google Scholar 

  28. Fischer, K.H., Hertz, J.A.: Spin Glasses. Cambridge University Press, Cambridge (1991). [6.1, 6.5, 6.A.3]

    Book  Google Scholar 

  29. Fisher, D.S.: Scaling and critical slowing down in random-field Ising systems. Phys. Rev. Lett. 56, 416–419 (1986). [6.7.1]

    Article  ADS  Google Scholar 

  30. Fisher, D.S.: Random transverse field Ising spin chains. Phys. Rev. Lett. 69, 534–537 (1992). [1.3, 5.3, 8.5.2]

    Article  ADS  Google Scholar 

  31. Fishman, S., Aharony, A.: Random field effects in disordered anisotropic antiferromagnets. J. Phys. C, Solid State Phys. 12(18), 729 (1979). [6.7.1]

    Article  ADS  Google Scholar 

  32. Gofman, M., Adler, J., Aharony, A., Harris, A.B., Schwartz, M.: Evidence for two exponent scaling in the random field Ising model. Phys. Rev. Lett. 71, 1569–1572 (1993). [6.7.1]

    Article  ADS  Google Scholar 

  33. Goldschmidt, Y.Y.: Solvable model of the quantum spin glass in a transverse field. Phys. Rev. B 41, 4858–4861 (1990). [1.3, 6.6, 8.5.3.2, 9.2]

    Article  MathSciNet  ADS  Google Scholar 

  34. Goldschmidt, Y.Y., Lai, P.Y.: Ising spin glass in a transverse field: replica-symmetry-breaking solution. Phys. Rev. Lett. 64, 2467–2470 (1990). [1.3, 6.2, 6.3, 8.1]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Gross, D., Mezard, M.: The simplest spin glass. Nucl. Phys. B 240(4), 431–452 (1984). [6.6]

    Article  MathSciNet  ADS  Google Scholar 

  36. Guo, M., Bhatt, R.N., Huse, D.A.: Quantum critical behavior of a three-dimensional Ising spin glass in a transverse magnetic field. Phys. Rev. Lett. 72, 4137–4140 (1994). [1.3, 6.2, 6.5, 6.4]

    Article  ADS  Google Scholar 

  37. Guo, M., Bhatt, R.N., Huse, D.A.: Quantum Griffiths singularities in the transverse-field Ising spin glass. Phys. Rev. B 54, 3336–3342 (1996). [6.2]

    Article  ADS  Google Scholar 

  38. Houdayer, J., Hartmann, A.K.: Low-temperature behavior of two-dimensional Gaussian Ising spin glasses. Phys. Rev. B 70, 014418 (2004). [6.1]

    Article  ADS  Google Scholar 

  39. Ishii, H., Yamamoto, T.: Effect of a transverse field on the spin glass freezing in the Sherrington-Kirkpatrick model. J. Phys. C, Solid State Phys. 18(33), 6225 (1985). [1.3, 6.2, 6.3, 9.2.5]

    Article  ADS  Google Scholar 

  40. Ishii, H., Yamamoto, T.K.: In: Suzuki, M. (ed.) Quantum Monte Carlo Methods. Springer, Heidelberg (1986). [6.3]

    Google Scholar 

  41. Katzgraber, H.G., Lee, L.W., Young, A.P.: Correlation length of the two-dimensional Ising spin glass with Gaussian interactions. Phys. Rev. B 70, 014417 (2004). [6.1]

    Article  ADS  Google Scholar 

  42. Katzgraber, H.G., Körner, M., Young, A.P.: Universality in three-dimensional Ising spin glasses: a Monte Carlo study. Phys. Rev. B 73, 224432 (2006). [6.1]

    Article  ADS  Google Scholar 

  43. Kopec, T.K.: A dynamic theory of transverse freezing in the Sherrington-Kirkpatrick Ising model. J. Phys. C, Solid State Phys. 21(36), 6053 (1988). [6.2]

    Article  ADS  Google Scholar 

  44. Kopec, T.K.: Transverse freezing in the quantum Ising spin glass: a thermofield dynamic approach. J. Phys. C, Solid State Phys. 21(2), 297 (1988). [6.2, 6.3]

    Article  ADS  Google Scholar 

  45. Lai, P.Y., Goldschmidt, Y.Y.: Monte Carlo studies of the Ising spin-glass in a transverse field. Europhys. Lett. 13(4), 289 (1990). [6.2, 6.3, 6.5, 8.1]

    Article  ADS  Google Scholar 

  46. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge (2000). [3.2, 5.3, 6.3]

    MATH  Google Scholar 

  47. Ma, Y.q., Li, Z.y.: Phase diagrams of the quantum Sherrington-Kirkpatrick Ising spin glass in a transverse field. Phys. Lett. A 148(1–2), 134–138 (1990). [6.3]

    Article  ADS  Google Scholar 

  48. Mari, P.O., Campbell, I.A.: Ising spin glasses: interaction distribution dependence of the critical exponents. arXiv:cond-mat/0111174 (2001). [6.1]

  49. Mattis, D.C.: Solvable spin systems with random interactions. Phys. Lett. A 56(5), 421–422 (1976). [6.8]

    Article  MathSciNet  ADS  Google Scholar 

  50. McCoy, B.M.: Theory of a two-dimensional Ising model with random impurities. iii. Boundary effects. Phys. Rev. 188, 1014–1031 (1969). [6.4]

    Article  MathSciNet  ADS  Google Scholar 

  51. McCoy, B.M.: Theory of a two-dimensional Ising model with random impurities. iv. Generalizations. Phys. Rev. B 2, 2795–2803 (1970). [6.4]

    Article  MathSciNet  ADS  Google Scholar 

  52. McCoy, B.M., Wu, T.T.: Theory of a two-dimensional Ising model with random impurities. i. Thermodynamics. Phys. Rev. 176, 631–643 (1968). [5.2, 5.3, 6.4]

    Article  MathSciNet  ADS  Google Scholar 

  53. McCoy, B.M., Wu, T.T.: Theory of a two-dimensional Ising model with random impurities. ii. Spin correlation functions. Phys. Rev. 188, 982–1013 (1969). [5.2, 6.4]

    Article  MathSciNet  ADS  Google Scholar 

  54. Mézard, M., Monasson, R.: Glassy transition in the three-dimensional random-field Ising model. Phys. Rev. B 50, 7199–7202 (1994). [6.7.1]

    Article  ADS  Google Scholar 

  55. Mézard, M., Young, A.P.: Replica symmetry breaking in the random field Ising model. Europhys. Lett. 18(7), 653 (1992). [6.7.1]

    Article  ADS  Google Scholar 

  56. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987). [1.3, 3.4.2, 6.1, 6.5, 6.A.3, 8.1]

    MATH  Google Scholar 

  57. Obuchi, T., Nishimori, H., Sherrington, D.: Phase diagram of the p-spin-interacting spin glass with ferromagnetic bias and a transverse field in the infinite-p limit. J. Phys. Soc. Jpn. 76, 054002 (2007). [6.6]

    Article  ADS  Google Scholar 

  58. Parisi, G.: Magnetic properties of spin glasses in a new mean field theory. J. Phys. A, Math. Gen. 13(5), 1887 (1980). [6.1]

    Article  ADS  Google Scholar 

  59. Parisi, G.: The order parameter for spin glasses: a function on the interval 0–1. J. Phys. A, Math. Gen. 13(3), 1101 (1980). [6.1]

    Article  ADS  Google Scholar 

  60. Parisi, G.: A sequence of approximated solutions to the S-K model for spin glasses. J. Phys. A, Math. Gen. 13(4), 115 (1980). [6.1]

    Article  ADS  Google Scholar 

  61. Pirc, R., Tadić, B., Blinc, R.: Tunneling model of proton glasses. Z. Phys. B, Condens. Matter 61, 69–74 (1985). [1.3, 6.2, 6.3]

    Article  ADS  Google Scholar 

  62. Quilliam, J.A., Meng, S., Mugford, C.G.A., Kycia, J.B.: Evidence of spin glass dynamics in dilute LiHo x Y1−x F4. Phys. Rev. Lett. 101, 187204 (2008). [1.1, 1.3]

    Article  ADS  Google Scholar 

  63. Ray, P., Chakrabarti, B.K., Chakrabarti, A.: Sherrington-Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys. Rev. B 39, 11828–11832 (1989). [1.3, 6.2, 6.3, 6.5, 8.1]

    Article  ADS  Google Scholar 

  64. Read, N., Sachdev, S., Ye, J.: Landau theory of quantum spin glasses of rotors and Ising spins. Phys. Rev. B 52, 384–410 (1995). [1.3, 6.2, 6.4, 6.5]

    Article  ADS  Google Scholar 

  65. Rieger, H.: In: Stauffer, D. (ed.) Annual Review of Computational Physics, vol. 2, p. 925. World Scientific, Singapore (1995). [6.2]

    Google Scholar 

  66. Rieger, H.: Critical behavior of the three-dimensional random-field Ising model: two-exponent scaling and discontinuous transition. Phys. Rev. B 52, 6659–6667 (1995). [6.7.1]

    Article  ADS  Google Scholar 

  67. Rieger, H., Young, A.P.: Critical exponents of the three-dimensional random field Ising model. J. Phys. A, Math. Gen. 26(20), 5279 (1993). [6.7.1]

    Article  ADS  Google Scholar 

  68. Rieger, H., Young, A.P.: Zero-temperature quantum phase transition of a two-dimensional Ising spin glass. Phys. Rev. Lett. 72, 4141–4144 (1994). [1.3, 6.2, 6.5, 6.4]

    Article  ADS  Google Scholar 

  69. Rieger, H., Young, A.P.: Griffiths singularities in the disordered phase of a quantum Ising spin glass. Phys. Rev. B 54, 3328–3335 (1996). [5.3, 6.2, 8.5.2]

    Article  ADS  Google Scholar 

  70. Schneider, T., Pytte, E.: Random-field instability of the ferromagnetic state. Phys. Rev. B 15, 1519–1522 (1977). [6.7.1, 6.7.2]

    Article  ADS  Google Scholar 

  71. Schwartz, M., Soffer, A.: Critical correlation susceptibility relation in random-field systems. Phys. Rev. B 33, 2059–2061 (1986). [6.7.1]

    Article  ADS  Google Scholar 

  72. Sen, P., Chakrabarti, B.K.: Frustrated transverse Ising models: a class of frustrated quantum systems. Int. J. Mod. Phys. B 6, 2439–2469 (1992). [1.1, 1.3, 4.6, 6.2, 6.3]

    Article  ADS  Google Scholar 

  73. Sen, P., Acharyya, M., Chakrabarti, B.K. (1992, unpublished). [6.5]

    Google Scholar 

  74. Shankar, R., Murthy, G.: Nearest-neighbor frustrated random-bond model in d=2: some exact results. Phys. Rev. B 36, 536–545 (1987). [5.3, 6.4]

    Article  MathSciNet  ADS  Google Scholar 

  75. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975). [6.1, 9.1.1, 9.1.2, 9.2, 9.2.4, 9.2.5]

    Article  ADS  Google Scholar 

  76. Stinchcombe, R.B.: Ising model in a transverse field. i. Basic theory. J. Phys. C, Solid State Phys. 6(15), 2459 (1973). [1.1, 1.2, 1.3, 3.6.2, 6.7.2]

    Article  ADS  Google Scholar 

  77. Stinchcombe, R.B.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transition and Critical Phenomena, vol. VII, p. 151. Academic Press, New York (1983). [1.3, 5.1, 5.2, 6.7.2]

    Google Scholar 

  78. Suzuki, M.: In: Suzuki, M. (ed.) Quantum Monte Carlo Methods, p. 1. Springer, Heidelberg (1986). [1.1, 1.3, 3.1, 4.3, 6.5, 6.A.2]

    Google Scholar 

  79. Takahashi, K., Matsuda, Y.: Effect of random fluctuations on quantum spin-glass transitions at zero temperature. J. Phys. Soc. Jpn. 76, 043712 (2010). [6.3]

    Article  ADS  Google Scholar 

  80. Takahashi, K., Takeda, K.: Dynamical correlations in the Sherrington-Kirkpatrick model in a transverse field. Phys. Rev. B 78, 174415 (2007). [6.3]

    Article  ADS  Google Scholar 

  81. Thill, M.J., Huse, D.A.: Equilibrium behaviour of quantum Ising spin glass. Phys. A, Stat. Mech. Appl. 214(3), 321–355 (1995). [6.2]

    Article  Google Scholar 

  82. Thirumalai, D., Li, Q., Kirkpatrick, T.R.: Infinite-range Ising spin glass in a transverse field. J. Phys. A, Math. Gen. 22(16), 3339 (1989). [1.3, 6.2, 6.5, 8.1]

    Article  MathSciNet  ADS  Google Scholar 

  83. Usadel, K.: Spin glass transition in an Ising spin system with transverse field. Solid State Commun. 58(9), 629–630 (1986). [6.3]

    Article  ADS  Google Scholar 

  84. Usadel, K., Schmitz, B.: Quantum fluctuations in an Ising spin glass with transverse field. Solid State Commun. 64(6), 975–977 (1987). [6.3]

    Article  ADS  Google Scholar 

  85. Villain, J.: Equilibrium critical properties of random field systems: new conjectures. J. Phys. Fr. 46(11), 1843–1852 (1985). [6.7.1]

    Article  Google Scholar 

  86. Walasek, K., Lukierska-Walasek, K.: Quantum transverse Ising spin-glass model in the mean-field approximation. Phys. Rev. B 34, 4962–4965 (1986). [1.3, 6.2]

    Article  ADS  Google Scholar 

  87. Walasek, K., Lukierska-Walasek, K.: Cluster-expansion method for the infinite-range quantum transverse Ising spin-glass model. Phys. Rev. B 38, 725–727 (1988). [1.3, 6.3]

    Article  ADS  Google Scholar 

  88. Wiesler, A.: A note on the Monte Carlo simulation of one dimensional quantum spin systems. Phys. Lett. A 89(7), 359–362 (1982). [1.3, 3.2, 6.3]

    Article  ADS  Google Scholar 

  89. Wu, W., Ellman, B., Rosenbaum, T.F., Aeppli, G., Reich, D.H.: From classical to quantum glass. Phys. Rev. Lett. 67, 2076–2079 (1991). [1.1, 1.3, 6.2.1, 7.1.3]

    Article  ADS  Google Scholar 

  90. Wu, W., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quenching of the nonlinear susceptibility at a T=0 spin glass transition. Phys. Rev. Lett. 71, 1919–1922 (1993). [1.1, 1.3, 6.2.1]

    Article  ADS  Google Scholar 

  91. Yamamoto, T.: Ground-state properties of the Sherrington-Kirkpatrick model with a transverse field. J. Phys. C, Solid State Phys. 21(23), 4377 (1988). [6.3]

    Article  ADS  Google Scholar 

  92. Yamamoto, T., Ishii, H.: A perturbation expansion for the Sherrington-Kirkpatrick model with a transverse field. J. Phys. C, Solid State Phys. 20(35), 6053 (1987). [1.3, 6.2, 6.3, 9.2.5]

    Article  ADS  Google Scholar 

  93. Yokota, T.: Numerical study of the SK spin glass in a transverse field by the pair approximation. J. Phys. Condens. Matter 3(36), 7039 (1991). [6.3, 6.5]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix 6.A

Appendix 6.A

6.1.1 6.A.1 The Vector Spin Glass Model

The Sherrington-Kirkpatrick model generalised to quantum spins (quantum vector spin glass) was introduced by Bray et al. [44], who applied the replica method to the Hamiltonian given by

$$ H = -\sum_{ij}J_{ij} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}, $$
(6.A.1)

where the sum is over all pair of spins (the interaction is long-range), and the exchange interaction J ij are independent random variables, with a symmetric Gaussian distribution

$$ P(J_{ij}) = \biggl( \frac{N}{2\pi J^{2}} \biggr)^{1/2} \exp \biggl( {-}\frac{NJ_{ij}^{2}}{2J^{2}} \biggr). $$
(6.A.2)

The spin operators satisfy the standard commutation relations,

$$ \bigl[S_{i}^{\alpha},S_{j}^{\beta}\bigr] = 2i \delta_{ij} \varepsilon_{\alpha\beta\gamma}S_{k}^{\gamma}. $$
(6.A.3)

Bray et al. [44] used replica method to handle the quenched disorder of the spin glass problem writing

$$ \overline{ \ln Z} = \lim_{n \to0} \frac{\overline{Z^{n}}-1}{n}. $$
(6.A.4)

The partition function of the vector spin glass model can be written as

$$ Z^{n} = \mathrm{Tr}\, P \exp \Biggl[ \beta \int_{0}^{1} d\tau \,\sum_{ij} J_{ij} \sum _{\alpha=1}^{n} \boldsymbol{S}_{i}^{\alpha}( \tau) \cdot \boldsymbol{S}_{j}^{\alpha}(\tau) \Biggr]. $$
(6.A.5)

Performing the Gaussian average, one gets

$$ \overline{ Z^{n}} = \mathrm{Tr}\, P \exp \biggl[ \frac{\beta^{2}J^{2}}{2N^{2}} \int_{0}^{1}d\tau \int_{0}^{1}d \tau' \,\sum_{\alpha, \beta} \sum _{i,j} \bigl[ \bigl(\boldsymbol{S}_{i}^{\alpha}( \tau)\cdot \boldsymbol{S}_{j}^{\alpha} (\tau)\bigr) \bigl( \boldsymbol{S}_{i}^{\beta}\bigl(\tau'\bigr)\cdot \boldsymbol{S}_{j}^{\beta}\bigl(\tau'\bigr)\bigr)\bigr] \biggr]. $$
(6.A.6)

Using the Hubbard-Stratonovitch transformation (6.3.18), one can simplify the above expression. One can then express the free energy in terms of the self-interaction R αα(τ,τ′), spin glass order parameter Q αβ(τ,τ′) and the quadrupolar order parameter Q αα(τ,τ′). In the paramagnetic phase, the spin glass order parameter and the quadrupolar order parameter vanish, and one can derive an effective Hamiltonian as in the case of a quantum Ising system. One then expands the total free energy in powers of Q αβ and obtains the value of T c , setting the coefficient (Q αβ)2 equal to zero, one gets the value of T c . Bray and Moore established the existence of spin glass transition for all S and estimated the value of T c (S) given by the condition

$$ J \chi_{\mathrm{loc}}=1; \quad \chi_{\mathrm{loc}} = \beta \int _{0}^{1}d\tau \int_{0}^{1} d\tau'\, \bigl\langle TS^{z}(\tau) S^{z}\bigl( \tau'\bigr) \bigr\rangle. $$
(6.A.7)

In the extreme quantum case S=1/2, one can obtain, following Bray et al., the value of transition temperature from the paramagnetic phase o the spin glass ordered phase as

$$ k_{B}T_{c} \sim J/4\sqrt{3}. $$
(6.A.8)

6.1.2 6.A.2 The Effective Classical Hamiltonian of a Transverse Ising Spin Glass

Let us consider the quantum transverse Ising spin glass Hamiltonian given by (6.3.1)

$$ H = H_{0} + V = -\varGamma\sum_{i}S_{i}^{x} - \sum_{ij}J_{ij}S_{i}^{z}S_{j}^{z}. $$
(6.A.9)

Let us consider the configuration averaged n-replicated partition function

$$ \overline{ Z^{n}} = \overline{ \bigl[\exp (-\beta H) \bigr]^{n}}. $$
(6.A.10)

One can now transform the above n-replicated partition function in the following form

$$ \overline{ Z^{n}} = \mathrm{Tr}\, \overline{ \exp \Biggl(-\beta \sum _{\alpha=1}^{n} H(\alpha)\Biggr)} $$
(6.A.11)

where H(α) is the Hamiltonian of the α-th replica and it is separated in the following form

$$ H(\alpha) = H_{0}(\alpha) + V(\alpha) = -\varGamma\sum _{i}S_{i\alpha}^{x} - \sum _{ij}J_{ij}S_{i\alpha}^{z}S_{j \alpha}^{z}. $$
(6.A.12)

Applying the Trotter formula (cf. Sect. 3.1), one now gets

$$ \overline{Z^{n}}= \lim_{M \to\infty} \prod _{\alpha=1}^{n} \biggl[ \exp \biggl( {-} \frac{\beta}{M} H_{0}(\alpha) \biggr) \exp \biggl( - \frac{\beta}{M} V(\alpha) \biggr) \biggr]^{M}. $$
(6.A.13)

Similarly as in the pure transverse Ising system, one introduces complete sets of eigenvectors of the operator \(S_{\alpha}^{z}\) and using the relation

$$ \langle S|\exp \bigl(\gamma S^{x}\bigr)\bigl|S' \bigr \rangle= \bigl[(1/2)\sinh2\gamma\bigr]^{1/2}\exp \biggl( \frac{SS'}{2}\ln\coth\gamma \biggr), $$
(6.A.14)

one gets

$$ \overline{Z^{n}} = \lim_{M \to\infty} \mathrm{Tr}\, \overline{ \exp \Biggl(\,\sum_{\alpha=1}^{n} H_{\mathrm{eff}}( \alpha)\Biggr) } $$
(6.A.15)

where the effective classical Hamiltonian

$$ H_{\mathrm{eff}} = \sum_{l=1}^{M} \Biggl( K_{M} \sum_{i=1}^{N} S( \alpha)_{i,l} S(\alpha)_{i,l+1}+ \sum _{\langle ij \rangle} K_{ij}^{(M)} S_{i,l}( \alpha) S_{j,l}(\alpha)+ \ln c_{M} \Biggr), $$
(6.A.16)

with

One can then perform the Gaussian averaging. This indicates an effective (d+2)-dimensional classical Hamiltonian [387].

6.1.3 6.A.3 Effective Single-Site Hamiltonian for Long-Range Interacting RFTIM

To derive the effective single-site Hamiltonian we consider the Hamiltonian of (long-range ferromagnetic) random field Ising model in a transverse field

$$ H = -\frac{J}{N} \sum_{i \neq j} S_{i}^{z} S_{j}^{z} - \sum _{i}h_{i}S_{i}^{z}- \varGamma\sum_{i}S_{i}^{x} $$
(6.A.17)

where the random variable at each site satisfies a Gaussian distribution (6.7.19). The configuration averaged free energy of the system is given by

$$ F = -kT \overline{ \ln Z}, $$
(6.A.18)

where k is the Boltzmann constant and Z is the partition function for a particular realisation of the random fields. Using replica trick [39, 76, 136, 275] we can write the n-replicated free energy in the form

(6.A.19)

where α denotes the α-th replica, P denotes the time ordering, \(H_{0}(\alpha) = - \varGamma\sum_{i}S_{\alpha i}^{x}\) and S z(τ)’s are operators in the interaction representation. We can now perform the configuration averaging to obtain

(6.A.20)

A Hubbard-Stratonovitch transformation simplifies the term

$$ \exp \Biggl[ \int_{0}^{\beta} d\tau \,\sum _{\alpha=1}^{n} \sum_{ij} \frac{J}{N} S_{\alpha i}^{z}(\tau) S_{\alpha j}^{z}( \tau) \Biggr] = \exp \Biggl[ \int_{0}^{\beta} d\tau \,\sum_{\alpha=1}^{n} \Biggl \vert \sqrt{ \frac{J}{N}} \sum_{i=1}^{N} S_{\alpha i}^{z}(\tau) \Biggr \vert ^{2} \Biggr] $$
(6.A.21)

(where the terms of order (1/N) are neglected), so that we obtain the configuration averaged n-replicated free energy

(6.A.22)

where x α s are dummy variables. In the N→∞ limit, one can readily obtain the saddle point configuration averaged free energy

$$ F = -kT \lim_{n \to0} \frac{1}{n} \Biggl[ -\frac{\beta}{2} \sum _{\alpha=1}^{n} x_{\alpha}^{2}+ \ln \mathrm{Tr} \exp (A) \Biggr] $$
(6.A.23)

where

(6.A.24)

The square term appearing in the above expression can be simplified using once again the Hubbard-Stratonovitch transformation to obtain

(6.A.25)

where s is a dummy variable. Finally, one obtains the form of free energy (with \(x = m^{z}\sqrt{2J}\) and =h) given by

(6.A.26)

We have thus reduced the many-body Hamiltonian (in the N→∞ limit) to an effective single-site problem, where the molecular field at each site is given by (2m z J+h) where h is distributed with a probability distribution P(h).

6.1.4 6.A.4 Mapping of Random Ising Antiferromagnet in Uniform Longitudinal and Transverse Fields to RFTIM

The equivalence between the transition in the random Ising antiferromagnet in uniform transverse and longitudinal fields (RIAFTL) to that in the random field transverse Ising model is obtained by employing semi-classical decimation of the one sublattice of the RIAFTL system, which neglects commutators between the spin operators. Here a partial trace is done over sites of one sub-lattice, e.g., that in which the site label i is odd. The original (reduced) Hamiltonian

$$ -\beta H = \sum_{i} \bigl(-K_{i,i+1}S_{i}^{z}S_{i+1}^{z}+ h_{i}S_{i}^{z}+ \varGamma S_{i}^{x} \bigr) = \sum_{i}H_{i} $$
(6.A.27)

is mapped into a new form

$$ -\beta H' = \sum_{i} \bigl(-K'_{2i,2i+2} S_{2i}^{z} S_{2i+2}^{z}+ h_{2i}' S_{2i}^{z}+ \varGamma'S_{i}^{x} \bigr) = \sum_{i}H_{2i}'. $$
(6.A.28)

The trace over S 2i+1 produces the factors

(6.A.29)

This can be written as

$$ \exp \bigl(A+BS_{2i}^{z}+ CS_{2i+2}^{z}+ DS_{2i}^{z}S_{2i+2}^{z}\bigr) $$
(6.A.30)

where matching of the expression for all four possible sets of values for \((S_{2i}^{z},S_{2i+2}^{z})\) gives A, B, C, D in terms of Γ, h 2i+1, K 2i,2i+1, K 2i+1,2i+2. For example

(6.A.31)
(6.A.32)

so that we arrive at the recursion relations (6.7.25), (6.7.26) and (6.7.27). For hK, one can evaluate B(K 1,K 2) (where K 1 and K 2 are two neighbouring bonds), using the simplified relations

(6.A.33)
(6.A.34)
(6.A.35)
(6.A.36)

where

$$ \varOmega_{\pm} = \bigl[ \varLambda_{\pm}^{2}+ \varGamma^{2}\bigr]^{1/2}, \qquad \varLambda_{\pm}= K_{1} \pm K_{2}. $$
(6.A.37)

Hence

$$ B(K_{1},K_{2}) = \frac{1}{4} \ln \biggl[ \frac{\cosh(\varOmega_{+}-h \frac{\varLambda_{+}}{\varOmega_{+}}) \cosh(\varOmega_{-}-h \frac{\varLambda_{-}}{\varOmega_{-}}) }{ \cosh(\varOmega_{+}+h \frac{\varLambda_{+}}{\varOmega_{+}}) \cosh(\varOmega_{-}+h \frac{\varLambda_{-}}{\varOmega_{-}}) } \biggr]. $$
(6.A.38)

If we now use the relation (for small h)

$$ \ln \biggl[ \frac{\cosh(\alpha+ \gamma h)}{ \cosh(\alpha-\gamma h)} \biggr] = 2\gamma h \tanh\alpha+ \cdots $$
(6.A.39)

we get

$$ B(K_{1},K_{2}) = -\frac{h}{2} \biggl[ \frac{\varLambda_{+}}{ \varOmega_{+}} \tanh\varOmega_{+} + \frac{\varLambda_{-}}{\varOmega_{-}} \tanh \varOmega_{-} \biggr] + O\bigl(h^{2}\bigr), $$
(6.A.40)

etc.

6.1.5 6.A.5 Derivation of Free Energy for the SK Model with Antiferromagnetic Bias in a Transverse Field

We show the derivation of the free energy per spin for the system to be described by the Hamiltonian.

(6.A.41)

Carrying out the Suzuki-Trotter decomposition, we have the replicated partition function.

(6.A.42)
(6.A.43)

where α and k denote the replica and Trotter indices. M is the number of the Trotter slices and β is the inverse temperature. The disorder J ij obeys

(6.A.44)

In other words, the J ij follows

(6.A.45)

We should notice that j 0>0, J=0 is pure ferromagnetic transverse Ising model, whereas j 0<0, J=0 corresponds to pure antiferromagnetic transverse Ising model. Then, by using \(\int_{-\infty}^{\infty}Dx\,\mathrm{e}^{ax}=\mathrm{e}^{a^{2}/2}\), \(Dx \equiv dx \,\mathrm{e}^{-x^{2}/2}/\sqrt{2\pi}\), we have the average of the replicated partition function as

(6.A.46)

where the bracket was defined as ≪⋯≫=∫∏ ij dJ ij P(J ij )(⋯). To take a proper thermodynamic limit, we use the scaling

(6.A.47)

For this rescaling of the parameters, the averaged replicated partition function \({\ll} Z_{M}^{n} {\gg}\) reads

(6.A.48)

We next assume the replica symmetry and static approximations such as

(6.A.49)
(6.A.50)
(6.A.51)

Then, we should notice the relation:

(6.A.52)
(6.A.53)

To take into account the above relations, we obtain in the limit of N→∞ as

(6.A.54)

Therefore, the following f is regarded as free energy per spin by the definition of replica theory

(6.A.55)

6.1.5.1 6.A.5.1 Saddle Point Equations

For simplicity, we define

(6.A.56)
(6.A.57)

Then, we have the following simplified free energy

(6.A.58)

The saddle point equations are derived as follows [159, 401].

(6.A.59)
(6.A.60)
(6.A.61)
(6.A.62)

6.1.5.2 6.A.5.2 At the Ground State

We first should notice that \(\tilde{q}\) is always larger than q. In fact, we can easily show that

(6.A.63)

Then, we consider the limit of β→∞. If \(\tilde{q}-q=\varepsilon\geq0\) is of order 1 object, the free energy f diverges in the limit of β→∞ as \((\beta\tilde{J})^{2} (q^{2}-\tilde{q}^{2})/4\). Therefore, we conclude that \(q = \tilde{q}\) should be satisfied in the limit of β→∞ and we obtain the saddle pint equation at the ground state as

(6.A.64)
(6.A.65)
(6.A.66)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, S., Inoue, Ji., Chakrabarti, B.K. (2013). Transverse Ising Spin Glass and Random Field Systems. In: Quantum Ising Phases and Transitions in Transverse Ising Models. Lecture Notes in Physics, vol 862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33039-1_6

Download citation

Publish with us

Policies and ethics