Advertisement

Transverse Ising Spin Glass and Random Field Systems

  • Sei Suzuki
  • Jun-ichi Inoue
  • Bikas K. Chakrabarti
Part of the Lecture Notes in Physics book series (LNP, volume 862)

Abstract

Transverse Ising systems with randomly frustrated interactions or random fields have an intriguing nature that a phase transition peculiar in randomly frustrated systems is driven by tunable thermal fluctuations as well as quantum fluctuations. The first part of Chap. 6 discusses transverse Ising spin glasses in great detail, where systems are characterised by randomly competing interactions and a uniform transverse field. It includes analytic and numerical studies of the Sherrington-Kirkpatrick model in a transverse field, numerical studies of the Edwards-Anderson model in a transverse field in two and three dimensions, and the mean field theory of Ising spin glasses with random p-body interactions in a transverse field. One of the interesting problem in quantum spin glasses is the stability of the state with replica symmetry breaking in quantum fluctuations. This problem is also mentioned. The second part of Chap. 6 focuses on the random field transverse Ising models. Phase diagrams at zero and finite temperatures are studied by the mean field theory. Appendices of this chapter include a brief note on the infinite-range vector (Heisenberg) spin glass model, mapping of the transverse Ising spin glass Hamiltonian to an effective classical Hamiltonian, mapping of random field Ising ferromagnet in a transverse field to a random Ising antiferromagnet in a longitudinal and transverse fields, and mathematical details of the replica method in transverse Ising spin glasses.

Keywords

Spin Glass Transverse Field Dynamical Exponent Spin Glass Model Spin Glass Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 7.
    Aharony, A.: Tricritical points in systems with random fields. Phys. Rev. B 18, 3318–3327 (1978). [6.7.1, 6.7.2] ADSCrossRefGoogle Scholar
  2. 14.
    Ancona-Torres, C., Silevitch, D.M., Aeppli, G., Rosenbaum, T.F.: Quantum and classical glass transitions in LiHoxY1−xF4. Phys. Rev. Lett. 101, 057201 (2008). [1.1, 1.3] ADSCrossRefGoogle Scholar
  3. 33.
    Belanger, D., Young, A.: The random field Ising model. J. Magn. Magn. Mater. 100(1–3), 272–291 (1991). [1.3, 6.7.1, 6.7.2] ADSCrossRefGoogle Scholar
  4. 34.
    Benyoussef, A., Ez-Zahraouy, H.: The bond-diluted spin-1 transverse Ising model with random longitudinal field. Phys. Status Solidi (b) 179(2), 521–530 (1993). [6.7.2] ADSCrossRefGoogle Scholar
  5. 35.
    Benyoussef, A., Ez-Zahraouy, H., Saber, M.: Magnetic properties of a transverse spin-1 Ising model with random longitudinal field. Phys. A, Stat. Mech. Appl. 198(3–4), 593–605 (1993). [6.7.2] CrossRefGoogle Scholar
  6. 36.
    Bernardi, L.W., Campbell, I.A.: Critical exponents in Ising spin glasses. Phys. Rev. B 56, 5271–5275 (1997). [6.1] ADSCrossRefGoogle Scholar
  7. 39.
    Binder, K., Young, A.P.: Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986). [6.1, 6.4, 6.5, 6.A.3] ADSCrossRefGoogle Scholar
  8. 44.
    Bray, A.J., Moore, M.A.: Replica theory of quantum spin glasses. J. Phys. C, Solid State Phys. 13(24), L655 (1980). [6.2, 6.3, 6.A.1] ADSCrossRefGoogle Scholar
  9. 45.
    Bray, A.J., Moore, M.A.: Scaling theory of the random-field Ising model. J. Phys. C, Solid State Phys. 18(28), L927 (1985). [6.7.1] MathSciNetADSCrossRefGoogle Scholar
  10. 46.
    Bricmont, J., Kupiainen, A.: Lower critical dimension for the random-field Ising model. Phys. Rev. Lett. 59, 1829–1832 (1987). [6.7.1] MathSciNetADSCrossRefGoogle Scholar
  11. 48.
    Brout, R., Müller, K., Thomas, H.: Tunnelling and collective excitations in a microscopic model of ferroelectricity. Solid State Commun. 4(10), 507–510 (1966). [1.1, 1.2, 4.5, 6.7.2, 7.1.1] ADSCrossRefGoogle Scholar
  12. 49.
    Büttner, G., Usadel, K.D.: Replica-symmetry breaking for the Ising spin glass in a transverse field. Phys. Rev. B 42, 6385–6395 (1990). [6.3, 6.5, 8.1] ADSCrossRefGoogle Scholar
  13. 50.
    Büttner, G., Usadel, K.D.: Stability analysis of an Ising spin glass with transverse field. Phys. Rev. B 41, 428–431 (1990). [6.2, 6.5, 6.3] ADSCrossRefGoogle Scholar
  14. 59.
    Cardy, J.L.: Random-field effects in site-disordered Ising antiferromagnets. Phys. Rev. B 29, 505–507 (1984). [6.7.1] ADSCrossRefGoogle Scholar
  15. 61.
    Cesare, L.D., Lukierska-Walasek, K., Rabuffo, I., Walasek, K.: On the p-spin interaction transverse Ising spin-glass model without replicas. Phys. A, Stat. Mech. Appl. 214(4), 499–510 (1995). [1.3, 6.6] CrossRefGoogle Scholar
  16. 62.
    Chakrabarti, B.K.: Critical behavior of the Ising spin-glass models in a transverse field. Phys. Rev. B 24, 4062–4064 (1981). [1.1, 1.3, 6.2, 6.4, 6.8] ADSCrossRefGoogle Scholar
  17. 70.
    Chandra, A.K., Inoue, J.i., Chakrabarti, B.K.: Quantum phase transition in a disordered long-range transverse Ising antiferromagnet. Phys. Rev. E 81, 021101 (2010). [6.3] ADSCrossRefGoogle Scholar
  18. 76.
    Chowdhury, D.: Spin Glass and Other Frustrated Systems. World Scientific, Singapore (1986). [6.1, 6.5, 6.A.3] Google Scholar
  19. 90.
    Crisanti, A., Rieger, H.: Random-bond Ising chain in a transverse magnetic field: a finite-size scaling analysis. J. Stat. Phys. 77, 1087–1098 (1994). [6.4] ADSCrossRefGoogle Scholar
  20. 103.
    Derrida, B.: Random-energy model: limit of a family of disordered models. Phys. Rev. Lett. 45, 79–82 (1980). [3.4.2, 6.6, 8.5.3.2] MathSciNetADSCrossRefGoogle Scholar
  21. 104.
    Derrida, B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B 24, 2613–2626 (1981). [6.6, 8.5.3.2] MathSciNetADSCrossRefGoogle Scholar
  22. 108.
    Dobrosavljević, V., Stratt, R.M.: Mean-field theory of the proton glass. Phys. Rev. B 36, 8484–8496 (1987). [6.3] ADSCrossRefGoogle Scholar
  23. 109.
    Dobrosavljevic, V., Thirumalai, D.: 1/p expansion for a p-spin interaction spin-glass model in a transverse field. J. Phys. A, Math. Gen. 23(15), L767 (1990). [6.6, 8.5.3.2] ADSCrossRefGoogle Scholar
  24. 112.
    dos Santos, R.R., dos Santos, R.Z., Kischinhevsky, M.: Transverse Ising spin-glass model. Phys. Rev. B 31, 4694–4697 (1985). [6.2] ADSCrossRefGoogle Scholar
  25. 116.
    Dutta, A., Chakrabarti, B.K., Stinchcombe, R.B.: Phase transitions in the random field Ising model in the presence of a transverse field. J. Phys. A, Math. Gen. 29(17), 5285 (1996). [6.7.2] ADSCrossRefzbMATHGoogle Scholar
  26. 121.
    Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F, Met. Phys. 5(5), 965 (1975). [6.1] ADSCrossRefGoogle Scholar
  27. 133.
    Fedorov, Y.V., Shender, E.F.: Quantum spin glasses in the Ising model with a transverse field. JETP Lett. 43, 681 (1986). [6.3] ADSGoogle Scholar
  28. 136.
    Fischer, K.H., Hertz, J.A.: Spin Glasses. Cambridge University Press, Cambridge (1991). [6.1, 6.5, 6.A.3] CrossRefGoogle Scholar
  29. 137.
    Fisher, D.S.: Scaling and critical slowing down in random-field Ising systems. Phys. Rev. Lett. 56, 416–419 (1986). [6.7.1] ADSCrossRefGoogle Scholar
  30. 138.
    Fisher, D.S.: Random transverse field Ising spin chains. Phys. Rev. Lett. 69, 534–537 (1992). [1.3, 5.3, 8.5.2] ADSCrossRefGoogle Scholar
  31. 147.
    Fishman, S., Aharony, A.: Random field effects in disordered anisotropic antiferromagnets. J. Phys. C, Solid State Phys. 12(18), 729 (1979). [6.7.1] ADSCrossRefGoogle Scholar
  32. 157.
    Gofman, M., Adler, J., Aharony, A., Harris, A.B., Schwartz, M.: Evidence for two exponent scaling in the random field Ising model. Phys. Rev. Lett. 71, 1569–1572 (1993). [6.7.1] ADSCrossRefGoogle Scholar
  33. 158.
    Goldschmidt, Y.Y.: Solvable model of the quantum spin glass in a transverse field. Phys. Rev. B 41, 4858–4861 (1990). [1.3, 6.6, 8.5.3.2, 9.2] MathSciNetADSCrossRefGoogle Scholar
  34. 159.
    Goldschmidt, Y.Y., Lai, P.Y.: Ising spin glass in a transverse field: replica-symmetry-breaking solution. Phys. Rev. Lett. 64, 2467–2470 (1990). [1.3, 6.2, 6.3, 8.1] MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. 162.
    Gross, D., Mezard, M.: The simplest spin glass. Nucl. Phys. B 240(4), 431–452 (1984). [6.6] MathSciNetADSCrossRefGoogle Scholar
  36. 163.
    Guo, M., Bhatt, R.N., Huse, D.A.: Quantum critical behavior of a three-dimensional Ising spin glass in a transverse magnetic field. Phys. Rev. Lett. 72, 4137–4140 (1994). [1.3, 6.2, 6.5, 6.4] ADSCrossRefGoogle Scholar
  37. 164.
    Guo, M., Bhatt, R.N., Huse, D.A.: Quantum Griffiths singularities in the transverse-field Ising spin glass. Phys. Rev. B 54, 3336–3342 (1996). [6.2] ADSCrossRefGoogle Scholar
  38. 182.
    Houdayer, J., Hartmann, A.K.: Low-temperature behavior of two-dimensional Gaussian Ising spin glasses. Phys. Rev. B 70, 014418 (2004). [6.1] ADSCrossRefGoogle Scholar
  39. 195.
    Ishii, H., Yamamoto, T.: Effect of a transverse field on the spin glass freezing in the Sherrington-Kirkpatrick model. J. Phys. C, Solid State Phys. 18(33), 6225 (1985). [1.3, 6.2, 6.3, 9.2.5] ADSCrossRefGoogle Scholar
  40. 196.
    Ishii, H., Yamamoto, T.K.: In: Suzuki, M. (ed.) Quantum Monte Carlo Methods. Springer, Heidelberg (1986). [6.3] Google Scholar
  41. 217.
    Katzgraber, H.G., Lee, L.W., Young, A.P.: Correlation length of the two-dimensional Ising spin glass with Gaussian interactions. Phys. Rev. B 70, 014417 (2004). [6.1] ADSCrossRefGoogle Scholar
  42. 218.
    Katzgraber, H.G., Körner, M., Young, A.P.: Universality in three-dimensional Ising spin glasses: a Monte Carlo study. Phys. Rev. B 73, 224432 (2006). [6.1] ADSCrossRefGoogle Scholar
  43. 232.
    Kopec, T.K.: A dynamic theory of transverse freezing in the Sherrington-Kirkpatrick Ising model. J. Phys. C, Solid State Phys. 21(36), 6053 (1988). [6.2] ADSCrossRefGoogle Scholar
  44. 233.
    Kopec, T.K.: Transverse freezing in the quantum Ising spin glass: a thermofield dynamic approach. J. Phys. C, Solid State Phys. 21(2), 297 (1988). [6.2, 6.3] ADSCrossRefGoogle Scholar
  45. 240.
    Lai, P.Y., Goldschmidt, Y.Y.: Monte Carlo studies of the Ising spin-glass in a transverse field. Europhys. Lett. 13(4), 289 (1990). [6.2, 6.3, 6.5, 8.1] ADSCrossRefGoogle Scholar
  46. 241.
    Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge (2000). [3.2, 5.3, 6.3] zbMATHGoogle Scholar
  47. 252.
    Ma, Y.q., Li, Z.y.: Phase diagrams of the quantum Sherrington-Kirkpatrick Ising spin glass in a transverse field. Phys. Lett. A 148(1–2), 134–138 (1990). [6.3] ADSCrossRefGoogle Scholar
  48. 258.
    Mari, P.O., Campbell, I.A.: Ising spin glasses: interaction distribution dependence of the critical exponents. arXiv:cond-mat/0111174 (2001). [6.1]
  49. 262.
    Mattis, D.C.: Solvable spin systems with random interactions. Phys. Lett. A 56(5), 421–422 (1976). [6.8] MathSciNetADSCrossRefGoogle Scholar
  50. 266.
    McCoy, B.M.: Theory of a two-dimensional Ising model with random impurities. iii. Boundary effects. Phys. Rev. 188, 1014–1031 (1969). [6.4] MathSciNetADSCrossRefGoogle Scholar
  51. 267.
    McCoy, B.M.: Theory of a two-dimensional Ising model with random impurities. iv. Generalizations. Phys. Rev. B 2, 2795–2803 (1970). [6.4] MathSciNetADSCrossRefGoogle Scholar
  52. 269.
    McCoy, B.M., Wu, T.T.: Theory of a two-dimensional Ising model with random impurities. i. Thermodynamics. Phys. Rev. 176, 631–643 (1968). [5.2, 5.3, 6.4] MathSciNetADSCrossRefGoogle Scholar
  53. 270.
    McCoy, B.M., Wu, T.T.: Theory of a two-dimensional Ising model with random impurities. ii. Spin correlation functions. Phys. Rev. 188, 982–1013 (1969). [5.2, 6.4] MathSciNetADSCrossRefGoogle Scholar
  54. 272.
    Mézard, M., Monasson, R.: Glassy transition in the three-dimensional random-field Ising model. Phys. Rev. B 50, 7199–7202 (1994). [6.7.1] ADSCrossRefGoogle Scholar
  55. 274.
    Mézard, M., Young, A.P.: Replica symmetry breaking in the random field Ising model. Europhys. Lett. 18(7), 653 (1992). [6.7.1] ADSCrossRefGoogle Scholar
  56. 275.
    Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987). [1.3, 3.4.2, 6.1, 6.5, 6.A.3, 8.1] zbMATHGoogle Scholar
  57. 300.
    Obuchi, T., Nishimori, H., Sherrington, D.: Phase diagram of the p-spin-interacting spin glass with ferromagnetic bias and a transverse field in the infinite-p limit. J. Phys. Soc. Jpn. 76, 054002 (2007). [6.6] ADSCrossRefGoogle Scholar
  58. 304.
    Parisi, G.: Magnetic properties of spin glasses in a new mean field theory. J. Phys. A, Math. Gen. 13(5), 1887 (1980). [6.1] ADSCrossRefGoogle Scholar
  59. 305.
    Parisi, G.: The order parameter for spin glasses: a function on the interval 0–1. J. Phys. A, Math. Gen. 13(3), 1101 (1980). [6.1] ADSCrossRefGoogle Scholar
  60. 306.
    Parisi, G.: A sequence of approximated solutions to the S-K model for spin glasses. J. Phys. A, Math. Gen. 13(4), 115 (1980). [6.1] ADSCrossRefGoogle Scholar
  61. 316.
    Pirc, R., Tadić, B., Blinc, R.: Tunneling model of proton glasses. Z. Phys. B, Condens. Matter 61, 69–74 (1985). [1.3, 6.2, 6.3] ADSCrossRefGoogle Scholar
  62. 321.
    Quilliam, J.A., Meng, S., Mugford, C.G.A., Kycia, J.B.: Evidence of spin glass dynamics in dilute LiHoxY1−xF4. Phys. Rev. Lett. 101, 187204 (2008). [1.1, 1.3] ADSCrossRefGoogle Scholar
  63. 323.
    Ray, P., Chakrabarti, B.K., Chakrabarti, A.: Sherrington-Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys. Rev. B 39, 11828–11832 (1989). [1.3, 6.2, 6.3, 6.5, 8.1] ADSCrossRefGoogle Scholar
  64. 325.
    Read, N., Sachdev, S., Ye, J.: Landau theory of quantum spin glasses of rotors and Ising spins. Phys. Rev. B 52, 384–410 (1995). [1.3, 6.2, 6.4, 6.5] ADSCrossRefGoogle Scholar
  65. 327.
    Rieger, H.: In: Stauffer, D. (ed.) Annual Review of Computational Physics, vol. 2, p. 925. World Scientific, Singapore (1995). [6.2] Google Scholar
  66. 328.
    Rieger, H.: Critical behavior of the three-dimensional random-field Ising model: two-exponent scaling and discontinuous transition. Phys. Rev. B 52, 6659–6667 (1995). [6.7.1] ADSCrossRefGoogle Scholar
  67. 331.
    Rieger, H., Young, A.P.: Critical exponents of the three-dimensional random field Ising model. J. Phys. A, Math. Gen. 26(20), 5279 (1993). [6.7.1] ADSCrossRefGoogle Scholar
  68. 332.
    Rieger, H., Young, A.P.: Zero-temperature quantum phase transition of a two-dimensional Ising spin glass. Phys. Rev. Lett. 72, 4141–4144 (1994). [1.3, 6.2, 6.5, 6.4] ADSCrossRefGoogle Scholar
  69. 333.
    Rieger, H., Young, A.P.: Griffiths singularities in the disordered phase of a quantum Ising spin glass. Phys. Rev. B 54, 3328–3335 (1996). [5.3, 6.2, 8.5.2] ADSCrossRefGoogle Scholar
  70. 348.
    Schneider, T., Pytte, E.: Random-field instability of the ferromagnetic state. Phys. Rev. B 15, 1519–1522 (1977). [6.7.1, 6.7.2] ADSCrossRefGoogle Scholar
  71. 350.
    Schwartz, M., Soffer, A.: Critical correlation susceptibility relation in random-field systems. Phys. Rev. B 33, 2059–2061 (1986). [6.7.1] ADSCrossRefGoogle Scholar
  72. 361.
    Sen, P., Chakrabarti, B.K.: Frustrated transverse Ising models: a class of frustrated quantum systems. Int. J. Mod. Phys. B 6, 2439–2469 (1992). [1.1, 1.3, 4.6, 6.2, 6.3] ADSCrossRefGoogle Scholar
  73. 363.
    Sen, P., Acharyya, M., Chakrabarti, B.K. (1992, unpublished). [6.5] Google Scholar
  74. 368.
    Shankar, R., Murthy, G.: Nearest-neighbor frustrated random-bond model in d=2: some exact results. Phys. Rev. B 36, 536–545 (1987). [5.3, 6.4] MathSciNetADSCrossRefGoogle Scholar
  75. 369.
    Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975). [6.1, 9.1.1, 9.1.2, 9.2, 9.2.4, 9.2.5] ADSCrossRefGoogle Scholar
  76. 379.
    Stinchcombe, R.B.: Ising model in a transverse field. i. Basic theory. J. Phys. C, Solid State Phys. 6(15), 2459 (1973). [1.1, 1.2, 1.3, 3.6.2, 6.7.2] ADSCrossRefGoogle Scholar
  77. 382.
    Stinchcombe, R.B.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transition and Critical Phenomena, vol. VII, p. 151. Academic Press, New York (1983). [1.3, 5.1, 5.2, 6.7.2] Google Scholar
  78. 387.
    Suzuki, M.: In: Suzuki, M. (ed.) Quantum Monte Carlo Methods, p. 1. Springer, Heidelberg (1986). [1.1, 1.3, 3.1, 4.3, 6.5, 6.A.2] Google Scholar
  79. 394.
    Takahashi, K., Matsuda, Y.: Effect of random fluctuations on quantum spin-glass transitions at zero temperature. J. Phys. Soc. Jpn. 76, 043712 (2010). [6.3] ADSCrossRefGoogle Scholar
  80. 395.
    Takahashi, K., Takeda, K.: Dynamical correlations in the Sherrington-Kirkpatrick model in a transverse field. Phys. Rev. B 78, 174415 (2007). [6.3] ADSCrossRefGoogle Scholar
  81. 400.
    Thill, M.J., Huse, D.A.: Equilibrium behaviour of quantum Ising spin glass. Phys. A, Stat. Mech. Appl. 214(3), 321–355 (1995). [6.2] CrossRefGoogle Scholar
  82. 401.
    Thirumalai, D., Li, Q., Kirkpatrick, T.R.: Infinite-range Ising spin glass in a transverse field. J. Phys. A, Math. Gen. 22(16), 3339 (1989). [1.3, 6.2, 6.5, 8.1] MathSciNetADSCrossRefGoogle Scholar
  83. 406.
    Usadel, K.: Spin glass transition in an Ising spin system with transverse field. Solid State Commun. 58(9), 629–630 (1986). [6.3] ADSCrossRefGoogle Scholar
  84. 408.
    Usadel, K., Schmitz, B.: Quantum fluctuations in an Ising spin glass with transverse field. Solid State Commun. 64(6), 975–977 (1987). [6.3] ADSCrossRefGoogle Scholar
  85. 411.
    Villain, J.: Equilibrium critical properties of random field systems: new conjectures. J. Phys. Fr. 46(11), 1843–1852 (1985). [6.7.1] CrossRefGoogle Scholar
  86. 417.
    Walasek, K., Lukierska-Walasek, K.: Quantum transverse Ising spin-glass model in the mean-field approximation. Phys. Rev. B 34, 4962–4965 (1986). [1.3, 6.2] ADSCrossRefGoogle Scholar
  87. 418.
    Walasek, K., Lukierska-Walasek, K.: Cluster-expansion method for the infinite-range quantum transverse Ising spin-glass model. Phys. Rev. B 38, 725–727 (1988). [1.3, 6.3] ADSCrossRefGoogle Scholar
  88. 421.
    Wiesler, A.: A note on the Monte Carlo simulation of one dimensional quantum spin systems. Phys. Lett. A 89(7), 359–362 (1982). [1.3, 3.2, 6.3] ADSCrossRefGoogle Scholar
  89. 427.
    Wu, W., Ellman, B., Rosenbaum, T.F., Aeppli, G., Reich, D.H.: From classical to quantum glass. Phys. Rev. Lett. 67, 2076–2079 (1991). [1.1, 1.3, 6.2.1, 7.1.3] ADSCrossRefGoogle Scholar
  90. 428.
    Wu, W., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quenching of the nonlinear susceptibility at a T=0 spin glass transition. Phys. Rev. Lett. 71, 1919–1922 (1993). [1.1, 1.3, 6.2.1] ADSCrossRefGoogle Scholar
  91. 432.
    Yamamoto, T.: Ground-state properties of the Sherrington-Kirkpatrick model with a transverse field. J. Phys. C, Solid State Phys. 21(23), 4377 (1988). [6.3] ADSCrossRefGoogle Scholar
  92. 433.
    Yamamoto, T., Ishii, H.: A perturbation expansion for the Sherrington-Kirkpatrick model with a transverse field. J. Phys. C, Solid State Phys. 20(35), 6053 (1987). [1.3, 6.2, 6.3, 9.2.5] ADSCrossRefGoogle Scholar
  93. 437.
    Yokota, T.: Numerical study of the SK spin glass in a transverse field by the pair approximation. J. Phys. Condens. Matter 3(36), 7039 (1991). [6.3, 6.5] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sei Suzuki
    • 1
  • Jun-ichi Inoue
    • 2
  • Bikas K. Chakrabarti
    • 3
  1. 1.Dept. of Physics and MathematicsAoyama Gakuin UniversitySagamiharaJapan
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  3. 3.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations