Advertisement

Transverse Ising Chain (Pure System)

  • Sei Suzuki
  • Jun-ichi Inoue
  • Bikas K. Chakrabarti
Part of the Lecture Notes in Physics book series (LNP, volume 862)

Abstract

The one-dimensional pure Ising model in a transverse field is the simplest solvable model that shows a quantum phase transition. The properties of this model are investigated in detail in Chap. 2. First, the quantum critical point is identified by employing duality argument. The Hamiltonian of the transverse Ising chain is then diagonalised and its ground-state properties are investigated by using the Jordan-Wigner transformation, which maps the system to a free fermion system. Next, approximate methods such as the exact diagonalisation method with finite size scaling, which can be also applied to interacting fermion systems, and the real-space renormalisation group method are introduced. The finite temperature property and an experimental study of the transverse Ising chain are mentioned in the last part of this chapter. Details of the Jordan-Wiger transformation, diagonalisation of a general Hamiltonian quadratic in fermion operators, and the calculation of correlation functions of the transverse Ising chain are included in appendices.

Keywords

Correlation Length Entanglement Entropy Quantum Phase Transition Transverse Field Finite Size Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 12.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008). [2.2.1] MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 54.
    Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech. Theory Exp. 2004(06), P06002 (2004). [2.2.1] MathSciNetCrossRefGoogle Scholar
  3. 77.
    Christe, P., Henkel, M.: Introduction to Conformal Invariance and Applications to Critical Phenomena. Lecture Notes in Physics Monographs, vol. M 16, pp. 122–136. Springer, Heidelberg (1993). Chapter 10. [2.A.2] zbMATHGoogle Scholar
  4. 81.
    Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smeibidl, P., Kiefer, K.: Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry. Science 327(5962), 177–180 (2010). [1.3, 2.6] ADSCrossRefGoogle Scholar
  5. 113.
    Drell, S.D., Weinstein, M., Yankielowicz, S.: Quantum field theories on a lattice: variational methods for arbitrary coupling strengths and the Ising model in a transverse magnetic field. Phys. Rev. D 16, 1769–1781 (1977). [2.4] ADSCrossRefGoogle Scholar
  6. 114.
    Drzewiński, A., Dekeyser, R.: Renormalization of the anisotropic linear XY model. Phys. Rev. B 51, 15218–15228 (1995). [2.4.1] ADSCrossRefGoogle Scholar
  7. 143.
    Fisher, M.E., Barber, M.N.: Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett. 28, 1516–1519 (1972). See also Barber, M.N.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transition and Critical Phenomena, vol. 8, p. 146. Academic Press, San Diego (1983). [2.3.1] ADSCrossRefGoogle Scholar
  8. 144.
    Fisher, M.E., Hartwig, R.E.: Toeplitz determinants: some applications, theorems, and conjectures. Adv. Chem. Phys. 15, 333–353 (1968). [2.A.3] CrossRefGoogle Scholar
  9. 167.
    Hamer, C.J., Barber, M.N.: Finite-lattice methods in quantum Hamiltonian field theory. i. The Ising model. J. Phys. A, Math. Gen. 14(1), 241 (1981). [1.3, 2.3.1, 4.3] MathSciNetADSCrossRefGoogle Scholar
  10. 175.
    Hirsch, J.E., Mazenko, G.F.: Renormalization-group transformation for quantum lattice systems at zero temperature. Phys. Rev. B 19, 2656–2663 (1979). [2.4.1] ADSCrossRefGoogle Scholar
  11. 176.
    Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424(3), 443–467 (1994). [2.2.1] MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 183.
    Hu, B.: The classical Ising model: a quantum renormalization group approach. Phys. Lett. A 71(1), 83–86 (1979). [2.4.1, 4.3] ADSCrossRefGoogle Scholar
  13. 184.
    Hu, B.: Introduction to real-space renormalization-group methods in critical and chaotic phenomena. Phys. Rep. 91(5), 233–295 (1982). [2.4.1] MathSciNetADSCrossRefGoogle Scholar
  14. 200.
    Its, A.R., Jin, B.Q., Korepin, V.E.: Entanglement in the XY spin chain. J. Phys. A, Math. Gen. 38(13), 2975 (2005). [2.2.1] MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 207.
    Jullien, R., Fields, J.N., Doniach, S.: Zero-temperature real-space renormalization-group method for a Kondo-lattice model Hamiltonian. Phys. Rev. B 16, 4889–4900 (1977). [2.4.1] ADSCrossRefGoogle Scholar
  16. 208.
    Jullien, R., Pfeuty, P., Fields, J.N., Doniach, S.: Zero-temperature renormalization method for quantum systems. i. Ising model in a transverse field in one dimension. Phys. Rev. B 18, 3568–3578 (1978). [2.4, 3.5] ADSCrossRefGoogle Scholar
  17. 209.
    Jullien, R., Pfeuty, P., Fields, J.N., Penson, K.A.: In: Brukhardt, T.W., van Leeuween, J.M.J. (eds.) Real Space Renormalisation, p. 119. Springer, Berlin (1982). [2.4] Google Scholar
  18. 216.
    Katsura, S.: Statistical mechanics of the anisotropic linear Heisenberg model. Phys. Rev. 127, 1508–1518 (1962). [1.1, 1.3, 2.1.21, 10.1.2] ADSzbMATHCrossRefGoogle Scholar
  19. 231.
    Kogut, J.B.: An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979). [1.1, 2.1.1, 3.A.2] MathSciNetADSCrossRefGoogle Scholar
  20. 237.
    Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part i. Phys. Rev. 60, 252–262 (1941). [2.1.1, 10.1.2] MathSciNetADSCrossRefGoogle Scholar
  21. 245.
    Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16(3), 407–466 (1961). [2.2, 2.A.2, 10.1.2] MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 265.
    McCoy, B.M.: Spin correlation functions of the XY model. Phys. Rev. 173, 531–541 (1968). [2.2.1, 2.A.3] MathSciNetADSCrossRefGoogle Scholar
  23. 268.
    McCoy, B.M.: Advanced Statistical Mechanics. Oxford University Press, Oxford (2010). [2.A.3] zbMATHGoogle Scholar
  24. 289.
    Mussardo, G.: Statistical Field Theory. Oxford University Press, Oxford (2010). [2.6] zbMATHGoogle Scholar
  25. 295.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000). [2.2.1, 8.1, 8.8] zbMATHGoogle Scholar
  26. 303.
    Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002). [2.2.1] ADSCrossRefGoogle Scholar
  27. 310.
    Peschel, I.: On the entanglement entropy for an XY spin chain. J. Stat. Mech. Theory Exp. 2004(12), P12005 (2004). [2.2.1] MathSciNetCrossRefGoogle Scholar
  28. 312.
    Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57(1), 79–90 (1970). [1.1, 1.3, 2.2, 2.2.1, 2.A.3, 4.3, 5.2, 10.1.2] ADSCrossRefGoogle Scholar
  29. 338.
    Sachdev, S.: Universal, finite-temperature, crossover functions of the quantum transition in the Ising chain in a transverse field. Nucl. Phys. B 464(3), 576–595 (1996). [2.A.3] MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 339.
    Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999). [1.1, 2.A.3] Google Scholar
  31. 367.
    Shankar, R.: In: Pati, J., Shafi, Q., Lu, Yu (eds.) Current Topics in Condensed Matter and Particle Physics. World Scientific, Singapore (1993). [2.2.1] Google Scholar
  32. 377.
    Stella, A.L., Vanderzande, C., Dekeyser, R.: Unified renormalization-group approach to the thermodynamic and ground-state properties of quantum lattice systems. Phys. Rev. B 27, 1812–1831 (1983). [2.4.1] MathSciNetADSCrossRefGoogle Scholar
  33. 392.
    Syljuåsen, O.F.: Entanglement and spontaneous symmetry breaking in quantum spin models. Phys. Rev. A 68, 060301 (2003). [2.2.1] MathSciNetADSCrossRefGoogle Scholar
  34. 393.
    Szegö, G.: On certain Hermitian forms associated with the Fourier series of a positive function. Comm. Sém. Math. Univ. Lund (Medd. Lunds Univ. Mat. Sem.) 1952(Tome Supplementaire), 228–238 (1952). [2.A.3] Google Scholar
  35. 410.
    Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). [2.2.1] ADSCrossRefGoogle Scholar
  36. 425.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998). [2.2.1] ADSCrossRefGoogle Scholar
  37. 442.
    Zamolodchikov, A.B.: Integrals of motion and s-matrix of the (scaled) t=t c Ising model with magnetic field. Int. J. Mod. Phys. A 4, 4235 (1989). [2.6] MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sei Suzuki
    • 1
  • Jun-ichi Inoue
    • 2
  • Bikas K. Chakrabarti
    • 3
  1. 1.Dept. of Physics and MathematicsAoyama Gakuin UniversitySagamiharaJapan
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  3. 3.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations