Advertisement

Introduction

  • Sei Suzuki
  • Jun-ichi Inoue
  • Bikas K. Chakrabarti
Part of the Lecture Notes in Physics book series (LNP, volume 862)

Abstract

The transverse Ising model was introduced in 1960s to study an order-disorder transition in hydrogen-bonded ferroelectric systems. Later, a significant amount of efforts have been devoted to the study of transverse Ising models. As a result, a lot of basic properties of a zero-temperature quantum phase transition of quantum many-body systems, ground-state properties of a frustrated or disordered system in the presence of quantum fluctuations, and the nature of non-equilibrium dynamics of a quantum system driven by controlling quantum fluctuations have been so far clarified. Also the study of quantum computation and information processing using quantum fluctuations has progressed recently. After a brief historical introduction of the transverse Ising models, Chap. 1 presents a qualitative property of the models obtained by the simple mean field theory, and gives a summary of following chapters as well as a list of experimental systems well represented by the transverse Ising models.

Keywords

Ising Model Spin Glass Quantum Fluctuation Quantum Critical Point Transverse Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    Acharyya, M., Chakrabarti, B.K.: Response of Ising systems to oscillating and pulsed fields: hysteresis, ac, and pulse susceptibility. Phys. Rev. B 52, 6550–6568 (1995). [1.1, 1.3, 7.2.3] ADSCrossRefGoogle Scholar
  2. 4.
    Acharyya, M., Chakrabarti, B.K., Stinchcombe, R.B.: Hysteresis in Ising model in transverse field. J. Phys. A, Math. Gen. 27(5), 1533 (1994). [1.1, 1.3, 7.2.3] ADSCrossRefGoogle Scholar
  3. 8.
    Akhiezer, I.A., Spol’nik, A.I.: Sov. Phys., Solid State 25, 81 (1983). [1.3] Google Scholar
  4. 9.
    Allen, D., Azaria, P., Lecheminant, P.: A two-leg quantum Ising ladder: a bosonization study of the ANNNI model. J. Phys. A, Math. Gen. 34(21), L305 (2001). [1.1, 1.3, 4.3.7] MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 10.
    Altshuler, B., Krovi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. 107(28), 12446–12450 (2010). [1.3, 8.5.4] ADSzbMATHCrossRefGoogle Scholar
  6. 14.
    Ancona-Torres, C., Silevitch, D.M., Aeppli, G., Rosenbaum, T.F.: Quantum and classical glass transitions in LiHoxY1−xF4. Phys. Rev. Lett. 101, 057201 (2008). [1.1, 1.3] ADSCrossRefGoogle Scholar
  7. 16.
    Anderson, P.W.: Random-phase approximation in the theory of superconductivity. Phys. Rev. 112, 1900–1916 (1958). [1.1, 1.3, 10.1, 10.1.1] MathSciNetADSCrossRefGoogle Scholar
  8. 18.
    Arizmendi, C.M., Rizzo, A.H., Epele, L.N., García Canal, C.A.: Phase diagram of the ANNNI model in the Hamiltonian limit. Z. Phys. B, Condens. Matter 83, 273–276 (1991). [1.3, 4.3, 4.3.7] ADSCrossRefGoogle Scholar
  9. 20.
    Auerbach, A.: Interacting Fermions and Quantum Magnetism. Springer, New York (1994). [1.3, 4.1, 4.3] CrossRefGoogle Scholar
  10. 22.
    Banerjee, V., Dattagupta, S., Sen, P.: Hysteresis in a quantum spin model. Phys. Rev. E 52, 1436–1446 (1995). [1.1, 1.3, 7.2.3] ADSCrossRefGoogle Scholar
  11. 24.
    Barber, M.N., Duxbury, P.M.: A quantum Hamiltonian approach to the two-dimensional axial next-nearest-neighbour Ising model. J. Phys. A, Math. Gen. 14(7), L251 (1981). [1.1, 4.3] MathSciNetADSCrossRefGoogle Scholar
  12. 28.
    Barouch, E., McCoy, B.M., Dresden, M.: Statistical mechanics of the XY model. i. Phys. Rev. A 2, 1075–1092 (1970). [1.1, 1.3, 7.2.2, 7.2.2.1] ADSCrossRefGoogle Scholar
  13. 31.
    Beccaria, M., Campostrini, M., Feo, A.: Density-matrix renormalization-group study of the disorder line in the quantum axial next-nearest-neighbor Ising model. Phys. Rev. B 73, 052402 (2006). [1.3, 4.3.7] ADSCrossRefGoogle Scholar
  14. 32.
    Beccaria, M., Campostrini, M., Feo, A.: Evidence for a floating phase of the transverse ANNNI model at high frustration. Phys. Rev. B 76, 094410 (2007). [1.3, 4.3.7] ADSCrossRefGoogle Scholar
  15. 33.
    Belanger, D., Young, A.: The random field Ising model. J. Magn. Magn. Mater. 100(1–3), 272–291 (1991). [1.3, 6.7.1, 6.7.2] ADSCrossRefGoogle Scholar
  16. 37.
    Bhattacharya, S., Ray, P.: A diluted quantum transverse Ising model in two dimensions. Phys. Lett. A 101(7), 346–348 (1984). [1.3, 5.2] MathSciNetADSCrossRefGoogle Scholar
  17. 38.
    Bhattacharyya, S., Das, A., Dasgupta, S.: Transverse Ising chain under periodic instantaneous quenches: dynamical many-body freezing and emergence of slow solitary oscillations. Phys. Rev. B 86(5), 054410 (2012). doi: 10.1103/PhysRevB.86.054410. [1.1, 1.3, 7.2.3.1] ADSCrossRefGoogle Scholar
  18. 40.
    Blinc, R.: On the isotopic effects in the ferroelectric behaviour of crystals with short hydrogen bonds. J. Phys. Chem. Solids 13(3–4), 204–211 (1960). [1.1, 1.2.8, 1.3] ADSCrossRefGoogle Scholar
  19. 41.
    Blinc, R., Svetina, S.: Cluster approximations for order-disorder-type hydrogen-bonded ferroelectrics. i. Small clusters. Phys. Rev. 147, 423–429 (1966). [1.3] ADSCrossRefGoogle Scholar
  20. 42.
    Blinc, R., Svetina, S.: Cluster approximations for order-disorder-type hydrogen-bonded ferroelectrics. ii. Application to KH2PO4. Phys. Rev. 147, 430–438 (1966). [1.3] ADSCrossRefGoogle Scholar
  21. 48.
    Brout, R., Müller, K., Thomas, H.: Tunnelling and collective excitations in a microscopic model of ferroelectricity. Solid State Commun. 4(10), 507–510 (1966). [1.1, 1.2.8, 4.5, 6.7.2, 7.1.1] ADSCrossRefGoogle Scholar
  22. 51.
    Büttner, G., Usadel, K.D.: The exact phase diagram of the quantum XY spin glass model in a transverse field. Z. Phys. B, Condens. Matter 83, 131–134 (1991). [1.3, 10.1.4] ADSCrossRefGoogle Scholar
  23. 53.
    Buyers, W.J.L., Cowley, R.A., Paul, G.L., Cochran, W.: In: Neutron Inelastic Scattering, vol. 1, p. 269. International Atomic Energy Agency, Vienna (1968). [1.3] Google Scholar
  24. 56.
    Calabrese, P., Cardy, J.: Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006). [1.1, 7.2.2.1] ADSCrossRefGoogle Scholar
  25. 58.
    Caneva, T., Fazio, R., Santoro, G.E.: Adiabatic quantum dynamics of a random Ising chain across its quantum critical point. Phys. Rev. B 76, 144427 (2007). [1.3, 8.5.2, 8.6] ADSCrossRefGoogle Scholar
  26. 61.
    Cesare, L.D., Lukierska-Walasek, K., Rabuffo, I., Walasek, K.: On the p-spin interaction transverse Ising spin-glass model without replicas. Phys. A, Stat. Mech. Appl. 214(4), 499–510 (1995). [1.3, 6.6] CrossRefGoogle Scholar
  27. 62.
    Chakrabarti, B.K.: Critical behavior of the Ising spin-glass models in a transverse field. Phys. Rev. B 24, 4062–4064 (1981). [1.1, 1.3, 6.2, 6.4, 6.8] ADSCrossRefGoogle Scholar
  28. 67.
    Chandra, A.K., Dasgupta, S.: Floating phase in the one-dimensional transverse axial next-nearest-neighbor Ising model. Phys. Rev. E 75, 021105 (2007). [1.1, 1.3, 4.3.7] ADSCrossRefGoogle Scholar
  29. 80.
    Cochran, W.: Dynamical, scattering and dielectric properties of ferroelectric crystals. Adv. Phys. 18(72), 157–192 (1969). [1.3] ADSCrossRefGoogle Scholar
  30. 81.
    Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smeibidl, P., Kiefer, K.: Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry. Science 327(5962), 177–180 (2010). [1.3, 2.6] ADSCrossRefGoogle Scholar
  31. 82.
    Continentino, M.A.: Quantum scaling in many-body systems. Phys. Rep. 239(3), 179–213 (1994). [1.1, 1.3, 3.5] ADSCrossRefGoogle Scholar
  32. 83.
    Cooke, A., Edmonds, D., Finn, C., Wolf, W.: J. Phys. Soc. Jpn. Suppl. B-1 17, 481 (1962). [1.3] CrossRefGoogle Scholar
  33. 84.
    Cooke, A., Ellis, C., Gehring, K., Leask, M., Martin, D., Wanklyn, B., Wells, M., White, R.: Observation of a magnetically controllable Jahn Teller distortion in dysprosium vanadate at low temperatures. Solid State Commun. 8(9), 689–692 (1970). [1.3] ADSCrossRefGoogle Scholar
  34. 85.
    Cooke, A., Martin, D., Wells, M.: The specific heat of dysprosium vanadate. Solid State Commun. 9(9), 519–522 (1971). [1.3] ADSCrossRefGoogle Scholar
  35. 86.
    Cooke, A., Swithenby, S., Wells, M.: The properties of thulium vanadate—an example of molecular field behaviour. Solid State Commun. 10(3), 265–268 (1972). [1.3] ADSCrossRefGoogle Scholar
  36. 88.
    Cooper, B.R., Vogt, O.: Singlet ground state magnetism. J. Phys., Colloq. 32, C1-958–C1-965 (1971). [1.3] Google Scholar
  37. 89.
    Courtens, E.: Vogel-Fulcher scaling of the susceptibility in a mixed-crystal proton glass. Phys. Rev. Lett. 52, 69–72 (1984). [1.3] ADSCrossRefGoogle Scholar
  38. 92.
    Das, A.: Exotic freezing of response in a quantum many-body system. Phys. Rev. B 82, 172402 (2010). [1.1, 1.3, 7.2.3.1] ADSCrossRefGoogle Scholar
  39. 96.
    Dattagupta, S., Tadić, B., Pirc, R., Blinc, R.: Tunneling in proton glasses: stochastic theory of NMR line shape. Phys. Rev. B 44, 4387–4396 (1991). [1.3] ADSCrossRefGoogle Scholar
  40. 98.
    de Gennes, P.G.: Collective motions of hydrogen bonds. Solid State Commun. 1(6), 132–137 (1963). [1.1, 1.2.8, 1.3] ADSCrossRefGoogle Scholar
  41. 102.
    Derian, R., Gendiar, A., Nishino, T.: Modulation of local magnetization in two-dimensional axial-next-nearest-neighbor Ising model. J. Phys. Soc. Jpn. 75(11), 114001 (2006). [1.1, 4.3.7] ADSCrossRefGoogle Scholar
  42. 115.
    Dutta, A., Sen, D.: Gapless line for the anisotropic Heisenberg spin-\(\frac{1}{2}\) chain in a magnetic field and the quantum axial next-nearest-neighbor Ising chain. Phys. Rev. B 67, 094435 (2003). [1.1, 1.3, 4.3.7] ADSCrossRefGoogle Scholar
  43. 118.
    Dziarmaga, J.: Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005). [1.1, 1.3, 7.2.2] ADSCrossRefGoogle Scholar
  44. 119.
    Dziarmaga, J.: Dynamics of a quantum phase transition in the random Ising model: logarithmic dependence of the defect density on the transition rate. Phys. Rev. B 74, 064416 (2006). [1.3, 8.6] ADSCrossRefGoogle Scholar
  45. 123.
    Elliott, R.J.: In: Balkanski, M. (ed.) Proc. of the Second Int. Conf. Light Scattering in Solids. Flammarion Sciences, Paris (1971). [1.3] Google Scholar
  46. 124.
    Elliott, R.J., Parkinson, J.B.: Theory of spin-phonon coupling in concentrated paramagnetic salts and its effect on thermal conductivity. Proc. Phys. Soc. 92(4), 1024 (1967). [1.3] ADSCrossRefGoogle Scholar
  47. 126.
    Elliott, R.J., Pfeuty, P., Wood, C.: Ising model with a transverse field. Phys. Rev. Lett. 25, 443–446 (1970). [1.1, 3.1, 3.2] ADSCrossRefGoogle Scholar
  48. 127.
    Elliott, R.J., Gehring, G.A., Malozemoff, A.P., Smith, S.R.P., Staude, W.S., Tyte, R.N.: Theory of co-operative Jahn-Teller distortions in DyVO4 and TbVO4 (phase transitions). J. Phys. C, Solid State Phys. 4(9), 179 (1971). [1.3] ADSCrossRefGoogle Scholar
  49. 128.
    Ellis, C.J., Gehring, K.A., Leask, M.J.M., White, R.L.: Spectroscopic properties of dysprosium vanadate. J. Phys., Colloq. 32, C1-1024–C1-1025 (1971). [1.3] CrossRefGoogle Scholar
  50. 130.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106 (2000). [1.1, 1.3, 8.1]
  51. 138.
    Fisher, D.S.: Random transverse field Ising spin chains. Phys. Rev. Lett. 69, 534–537 (1992). [1.3, 5.3, 8.5.2] ADSCrossRefGoogle Scholar
  52. 139.
    Fisher, D.S.: Critical behavior of random transverse-field Ising spin chains. Phys. Rev. B 51, 6411–6461 (1995). [1.3, 5.3, 8.5.2] ADSCrossRefGoogle Scholar
  53. 140.
    Fisher, D.S.: Phase transitions and singularities in random quantum systems. Phys. A, Stat. Mech. Appl. 263(1–4), 222–233 (1999). [1.3, 5.3] CrossRefGoogle Scholar
  54. 141.
    Fisher, D.S., Young, A.P.: Distributions of gaps and end-to-end correlations in random transverse-field Ising spin chains. Phys. Rev. B 58, 9131–9141 (1998). [1.3, 5.3] ADSCrossRefGoogle Scholar
  55. 142.
    Fisher, M.E.: Perpendicular susceptibility of the Ising model. J. Math. Phys. 4(1), 124–135 (1963). [1.1] ADSzbMATHCrossRefGoogle Scholar
  56. 146.
    Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S.: Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989). [1.1] ADSCrossRefGoogle Scholar
  57. 148.
    Fletcher, J., Sheard, F.: The anomalous Schottky heat capacity of cerium ethylsulphate. Solid State Commun. 9(16), 1403–1406 (1971). [1.3] ADSCrossRefGoogle Scholar
  58. 154.
    Gehring, K., Malozemoff, A., Staude, W., Tyte, R.: Observation of magnetically controllable distortion in TbVO4 by optical spectroscopy. Solid State Commun. 9(9), 511–514 (1971). [1.3] ADSCrossRefGoogle Scholar
  59. 158.
    Goldschmidt, Y.Y.: Solvable model of the quantum spin glass in a transverse field. Phys. Rev. B 41, 4858–4861 (1990). [1.3, 6.6, 8.5.3.2, 9.2] MathSciNetADSCrossRefGoogle Scholar
  60. 159.
    Goldschmidt, Y.Y., Lai, P.Y.: Ising spin glass in a transverse field: replica-symmetry-breaking solution. Phys. Rev. Lett. 64, 2467–2470 (1990). [1.3, 6.2, 6.3, 8.1] MathSciNetADSzbMATHCrossRefGoogle Scholar
  61. 163.
    Guo, M., Bhatt, R.N., Huse, D.A.: Quantum critical behavior of a three-dimensional Ising spin glass in a transverse magnetic field. Phys. Rev. Lett. 72, 4137–4140 (1994). [1.3, 6.2, 6.5, 6.4] ADSCrossRefGoogle Scholar
  62. 166.
    Hamer, C.J., Barber, M.N.: Finite-lattice methods in quantum Hamiltonian field theory. i. O(2) and O(3) Heisenberg models. J. Phys. A, Math. Gen. 14(1), 259 (1981). [1.3, 4.3] MathSciNetADSCrossRefGoogle Scholar
  63. 167.
    Hamer, C.J., Barber, M.N.: Finite-lattice methods in quantum Hamiltonian field theory. i. The Ising model. J. Phys. A, Math. Gen. 14(1), 241 (1981). [1.3, 2.3.1, 4.3] MathSciNetADSCrossRefGoogle Scholar
  64. 168.
    Harley, R., Hayes, W., Smith, S.: Raman study of phase transitions in rare earth vanadates. Solid State Commun. 9(9), 515–517 (1971). [1.3] ADSCrossRefGoogle Scholar
  65. 169.
    Harris, A.B.: Effect of random defects on the critical behaviour of Ising models. J. Phys. C, Solid State Phys. 7(9), 1671 (1974). [1.3, 5.2] ADSCrossRefGoogle Scholar
  66. 170.
    Harris, A.B.: Upper bounds for the transition temperatures of generalized Ising models. J. Phys. C, Solid State Phys. 7(17), 3082 (1974). [1.3, 5.2] ADSCrossRefGoogle Scholar
  67. 171.
    Harris, A.B., Micheletti, C., Yeomans, J.M.: Quantum fluctuations in the axial next-nearest-neighbor Ising model. Phys. Rev. Lett. 74, 3045–3048 (1995). [1.3, 4.4] ADSCrossRefGoogle Scholar
  68. 173.
    Hertz, J.A.: Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976). [1.1, 3.5] ADSCrossRefGoogle Scholar
  69. 174.
    Hikichi, T., Suzuki, S., Sengupta, K.: Slow quench dynamics of the Kitaev model: anisotropic critical point and effect of disorder. Phys. Rev. B 82, 174305 (2010). [1.3, 10.2.3] ADSCrossRefGoogle Scholar
  70. 188.
    Iglói, F., Monthus, C.: Strong disorder RG approach of random systems. Phys. Rep. 412(5–6), 277–431 (2005). [1.3, 5.1, 8.5.2] ADSCrossRefGoogle Scholar
  71. 189.
    Ikegami, T., Miyashita, S., Rieger, H.: Griffiths-McCoy singularities in the transverse field Ising model on the randomly diluted square lattice. J. Phys. Soc. Jpn. 67(8), 2671–2677 (1998). [9] ADSCrossRefGoogle Scholar
  72. 190.
    Inoue, J.: Application of the quantum spin glass theory to image restoration. Phys. Rev. E 63, 046114 (2001). [1.3, 9.2, 9.2.4] ADSCrossRefGoogle Scholar
  73. 191.
    Inoue, J.: In: Das, A., Chakrabarti B.K. (eds.) Quantum Annealing and Related Optimization Methods, p. 259. Springer, Berlin (2005). [1.3, 9.2] CrossRefGoogle Scholar
  74. 192.
    Inoue, J.: Pattern-recalling processes in quantum Hopfield networks far from saturation. J. Phys. Conf. Ser. 297(1), 012012 (2011). [1.1, 1.3, 9.1.2] ADSCrossRefGoogle Scholar
  75. 195.
    Ishii, H., Yamamoto, T.: Effect of a transverse field on the spin glass freezing in the Sherrington-Kirkpatrick model. J. Phys. C, Solid State Phys. 18(33), 6225 (1985). [1.3, 6.2, 6.3, 9.2.5] ADSCrossRefGoogle Scholar
  76. 199.
    Itoh, J., Yamagata, Y.: Nuclear magnetic resonance experiments on ammonium halides. ii. Halogen nuclear magnetic resonance. J. Phys. Soc. Jpn. 17(3), 481–507 (1962). [1.3] ADSCrossRefGoogle Scholar
  77. 202.
    Jona, F., Shirane, G.: Ferroelectric Crystals. Pergamon, Oxford (1962). [1.3] Google Scholar
  78. 204.
    Jörg, T., Krzakala, F., Kurchan, J., Maggs, A.C.: Simple glass models and their quantum annealing. Phys. Rev. Lett. 101, 147204 (2008). [1.3, 8.5.3.2] ADSCrossRefGoogle Scholar
  79. 205.
    Jörg, T., Krzakala, F., Kurchan, J., Maggs, A.C., Pujos, J.: Energy gaps in quantum first-order mean-field-like transitions: the problems that quantum annealing cannot solve. Europhys. Lett. 89(4), 40004 (2010). [1.3, 3.4.2, 8.5.3.1] CrossRefGoogle Scholar
  80. 211.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998). [1.1, 1.3, 8.1, 8.4.1, 9.2, 9.2.6] ADSCrossRefGoogle Scholar
  81. 212.
    Kaminow, I.P., Damen, T.C.: Temperature dependence of the ferroelectric mode in KH2PO4. Phys. Rev. Lett. 20, 1105–1108 (1968). [1.3] ADSCrossRefGoogle Scholar
  82. 213.
    Kanzig, W.: In: Seitz, F., Turnbull, D. (eds.) Solid State Physics, p. 1. Academic Press, New York (1957). [1.3] Google Scholar
  83. 216.
    Katsura, S.: Statistical mechanics of the anisotropic linear Heisenberg model. Phys. Rev. 127, 1508–1518 (1962). [1.1, 1.3, 2.1.2, 10.1.2] ADSzbMATHCrossRefGoogle Scholar
  84. 222.
    Kawashima, N., Harada, K.: Recent developments of world-line Monte Carlo methods. J. Phys. Soc. Jpn. 73(6), 1379–1414 (2004). [3.2] ADSzbMATHCrossRefGoogle Scholar
  85. 229.
    Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006). [1.3, 10.2.1] MathSciNetADSzbMATHCrossRefGoogle Scholar
  86. 230.
    Kobayashi, K.K.: Dynamical theory of the phase transition in KH2PO4-type ferroelectric crystals. J. Phys. Soc. Jpn. 24(3), 497–508 (1968). [1.3] ADSCrossRefGoogle Scholar
  87. 231.
    Kogut, J.B.: An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979). [1.1, 2.1.1, 3.A.2] MathSciNetADSCrossRefGoogle Scholar
  88. 235.
    Kovács, I.A., Iglói, F.: Renormalization group study of the two-dimensional random transverse-field Ising model. Phys. Rev. B 82, 054437 (2010). [1.3, 5.3, 8.5.2] ADSCrossRefGoogle Scholar
  89. 236.
    Kovács, I.A., Iglói, F.: Infinite-disorder scaling of random quantum magnets in three and higher dimensions. Phys. Rev. B 83, 174207 (2011). [1.3, 5.3, 8.8] ADSCrossRefGoogle Scholar
  90. 244.
    Lee, P.A., Ramakrishnan, T.V.: Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985). [1.1] ADSCrossRefGoogle Scholar
  91. 250.
    Ma, Y.q., Gong, C.d.: Statics in the random quantum asymmetric Sherrington-Kirkpatrick model. Phys. Rev. B 45, 793–796 (1992). [1.3, 9.1.1] ADSCrossRefGoogle Scholar
  92. 251.
    Ma, Y.q., Gong, C.d.: Hopfield spin-glass model in a transverse field. Phys. Rev. B 48, 12778–12782 (1993). [1.3,9.1.1] ADSCrossRefGoogle Scholar
  93. 253.
    Ma, Y.q., Zhang, Y.m., Ma, Y.g., Gong, C.d.: Statistical mechanics of a Hopfield neural-network model in a transverse field. Phys. Rev. E 47, 3985–3987 (1993). [1.3, 9.1.1] ADSCrossRefGoogle Scholar
  94. 255.
    Majumdar, C.K., Ghosh, D.K.: On next-nearest-neighbor interaction in linear chain. i. J. Math. Phys. 10(8), 1388–1398 (1969). [1.3, 4.3] MathSciNetADSCrossRefGoogle Scholar
  95. 256.
    Majumdar, C.K., Ghosh, D.K.: On next-nearest-neighbor interaction in linear chain. ii. J. Math. Phys. 10(8), 1399–1402 (1969). [1.3, 4.3] MathSciNetADSCrossRefGoogle Scholar
  96. 257.
    Mangum, B.W., Lee, J.N., Moos, H.W.: Magnetically controllable cooperative Jahn-Teller distortion in TmAsO4. Phys. Rev. Lett. 27, 1517–1520 (1971). [1.3] ADSCrossRefGoogle Scholar
  97. 263.
    Mattis, D.C.: Encyclopedia of Magnetism in One Dimension. World Scientific, Singapore (1994). [1.3, 4.1] Google Scholar
  98. 273.
    Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, Oxford (2009). [1.3, 8.1] zbMATHCrossRefGoogle Scholar
  99. 275.
    Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987). [1.3, 3.4.2, 6.1, 6.5, 6.A.3, 8.1] zbMATHGoogle Scholar
  100. 280.
    Morita, S., Nishimori, H.: Convergence theorems for quantum annealing. J. Phys. A, Math. Gen. 39(45), 13903 (2006). [1.3, 8.7.2] MathSciNetADSzbMATHCrossRefGoogle Scholar
  101. 281.
    Morita, S., Nishimori, H.: Convergence of quantum annealing with real-time Schrödinger dynamics. J. Phys. Soc. Jpn. 76(6), 064002 (2007). [1.3, 8.7.1] MathSciNetADSCrossRefGoogle Scholar
  102. 284.
    Moruzzi, V., Teaney, D.: Specific heat of EuS. Solid State Commun. 1(6), 127–131 (1963). [1.3] ADSCrossRefGoogle Scholar
  103. 290.
    Nagai, O., Yamada, Y., Miyatake, Y.: In: Suzuki, M. (ed.) Quantum Monte Carlo Methods, p. 95. Springer, Heidelberg (1986). [1.3, 3.2] Google Scholar
  104. 291.
    Nagy, A.: Exploring phase transitions by finite-entanglement scaling of MPS in the 1D ANNNI model. New J. Phys. 13(2), 023015 (2011). [1.1, 1.3, 4.3.7] ADSCrossRefGoogle Scholar
  105. 292.
    Nakamura, T., Ito, Y.: A quantum Monte Carlo algorithm realizing an intrinsic relaxation. J. Phys. Soc. Jpn. 72(10), 2405–2408 (2003). [3.2] ADSCrossRefGoogle Scholar
  106. 294.
    Narath, A., Schirber, J.E.: Effect of hydrostatic pressure on the metamagnetic transitions in FeCl2⋅2H2O, CoCl2⋅2H2O, FeCl2, and FeBr2. J. Appl. Phys. 37(3), 1124–1125 (1966). [1.3] ADSCrossRefGoogle Scholar
  107. 297.
    Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford University Press, Oxford (2001). [1.3, 8.1, 9.2, 9.2.2] zbMATHCrossRefGoogle Scholar
  108. 298.
    Nishimori, H., Nonomura, Y.: Quantum effects in neural networks. J. Phys. Soc. Jpn. 65(12), 3780–3796 (1996). [1.1, 1.3, 9.1.1, 9.A] MathSciNetADSzbMATHCrossRefGoogle Scholar
  109. 311.
    Peschel, I., Emery, V.J.: Calculation of spin correlations in two-dimensional Ising systems from one-dimensional kinetic models. Z. Phys. B, Condens. Matter 43, 241–249 (1981). [1.3, 4.3, 4.3.7] MathSciNetADSCrossRefGoogle Scholar
  110. 312.
    Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57(1), 79–90 (1970). [1.1, 1.3, 2.2, 2.2.1, 2.A.3, 4.3, 5.2, 10.1.2] ADSCrossRefGoogle Scholar
  111. 314.
    Pfeuty, P., Jullien, R., Penson, K.A.: In: Real Space Renormalisation. Topics in Current Physics, vol. 30, p. 119. Springer, Heidelberg (1982) [1.3, 4.3] CrossRefGoogle Scholar
  112. 315.
    Pich, C., Young, A.P., Rieger, H., Kawashima, N.: Critical behavior and Griffiths-McCoy singularities in the two-dimensional random quantum Ising ferromagnet. Phys. Rev. Lett. 81, 5916–5919 (1998). [1.3, 5.3] ADSCrossRefGoogle Scholar
  113. 316.
    Pirc, R., Tadić, B., Blinc, R.: Tunneling model of proton glasses. Z. Phys. B, Condens. Matter 61, 69–74 (1985). [1.3, 6.2, 6.3] ADSCrossRefGoogle Scholar
  114. 317.
    Pirc, R., Tadić, B., Blinc, R.: Random-field smearing of the proton-glass transition. Phys. Rev. B 36, 8607–8615 (1987). [1.3] ADSCrossRefGoogle Scholar
  115. 318.
    Polkovnikov, A.: Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201 (2005). [1.3, 7.2.2.2, 8.6] ADSCrossRefGoogle Scholar
  116. 321.
    Quilliam, J.A., Meng, S., Mugford, C.G.A., Kycia, J.B.: Evidence of spin glass dynamics in dilute LiHoxY1−xF4. Phys. Rev. Lett. 101, 187204 (2008). [1.1, 1.3] ADSCrossRefGoogle Scholar
  117. 322.
    Ray, P., Chakrabarti, B.K.: Exact ground-state excitations of the XY model in a transverse field in one dimension. Phys. Lett. A 98(8–9), 431–432 (1983). [1.3, 10.1.2] ADSCrossRefGoogle Scholar
  118. 323.
    Ray, P., Chakrabarti, B.K., Chakrabarti, A.: Sherrington-Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys. Rev. B 39, 11828–11832 (1989). [1.3, 6.2, 6.3, 6.5, 8.1] ADSCrossRefGoogle Scholar
  119. 325.
    Read, N., Sachdev, S., Ye, J.: Landau theory of quantum spin glasses of rotors and Ising spins. Phys. Rev. B 52, 384–410 (1995). [1.3, 6.2, 6.4, 6.5] ADSCrossRefGoogle Scholar
  120. 332.
    Rieger, H., Young, A.P.: Zero-temperature quantum phase transition of a two-dimensional Ising spin glass. Phys. Rev. Lett. 72, 4141–4144 (1994). [1.3, 6.2, 6.5, 6.4] ADSCrossRefGoogle Scholar
  121. 334.
    Rossini, D., Silva, A., Mussardo, G., Santoro, G.E.: Effective thermal dynamics following a quantum quench in a spin chain. Phys. Rev. Lett. 102, 127204 (2009). [1.1, 1.3, 7.2.2.1] ADSCrossRefGoogle Scholar
  122. 335.
    Rossini, D., Suzuki, S., Mussardo, G., Santoro, G.E., Silva, A.: Long time dynamics following a quench in an integrable quantum spin chain: local versus nonlocal operators and effective thermal behavior. Phys. Rev. B 82, 144302 (2010). [1.1, 1.3, 7.2.2.1] ADSCrossRefGoogle Scholar
  123. 336.
    Ruján, P.: Critical behavior of two-dimensional models with spatially modulated phases: analytic results. Phys. Rev. B 24, 6620–6631 (1981). [1.1, 4.3] ADSCrossRefGoogle Scholar
  124. 339.
    Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999). [1.1, 2.A.3] Google Scholar
  125. 340.
    Samara, G.A.: Vanishing of the ferroelectric and antiferroelectric states in KH2PO2-type crystals at high pressure. Phys. Rev. Lett. 27, 103–106 (1971). [1.3] ADSCrossRefGoogle Scholar
  126. 344.
    Satija, I.I.: Symmetry breaking and stabilization of critical phase. Phys. Rev. B 48, 3511–3514 (1993). [1.3, 10.1.3] ADSCrossRefGoogle Scholar
  127. 345.
    Satija, I.I.: Spectral and magnetic interplay in quantum spin chains: stabilization of the critical phase due to long-range order. Phys. Rev. B 49, 3391–3399 (1994). [1.3, 10.1.3] ADSCrossRefGoogle Scholar
  128. 346.
    Satija, I.I., Chaves, J.C.: XY-to-Ising crossover and quadrupling of the butterfly spectrum. Phys. Rev. B 49, 13239–13242 (1994). [1.3, 10.1.3] ADSCrossRefGoogle Scholar
  129. 349.
    Schultz, T.D., Mattis, D.C., Lieb, E.H.: Two-dimensional Ising model as a soluble problem of many fermions. Rev. Mod. Phys. 36, 856–871 (1964). [1.1, 1.3, 3.1, 3.A.2, 10.1.2] MathSciNetADSCrossRefGoogle Scholar
  130. 355.
    Sen, D.: Large-S analysis of a quantum axial next-nearest-neighbor Ising model in one dimension. Phys. Rev. B 43, 5939–5943 (1991). [1.3, 4.4] ADSCrossRefGoogle Scholar
  131. 356.
    Sen, D., Chakrabarti, B.K.: Large-S analysis of one-dimensional quantum-spin models in a transverse magnetic field. Phys. Rev. B 41, 4713–4722 (1990). [1.3, 4.3, 4.4] ADSCrossRefGoogle Scholar
  132. 359.
    Sen, P., Chakrabarti, B.K.: Ising models with competing axial interactions in transverse fields. Phys. Rev. B 40, 760–762 (1989). [1.1, 1.3, 4.3] ADSCrossRefGoogle Scholar
  133. 360.
    Sen, P., Chakrabarti, B.K.: Critical properties of a one-dimensional frustrated quantum magnetic model. Phys. Rev. B 43, 13559–13565 (1991). [1.1, 1.3, 4.3] ADSCrossRefGoogle Scholar
  134. 361.
    Sen, P., Chakrabarti, B.K.: Frustrated transverse Ising models: a class of frustrated quantum systems. Int. J. Mod. Phys. B 6, 2439–2469 (1992). [1.1, 1.3, 4.6, 6.2, 6.3] ADSCrossRefGoogle Scholar
  135. 362.
    Sen, P., Chakraborty, S., Dasgupta, S., Chakrabarti, B.K.: Numerical estimate of the phase diagram of finite ANNNI chains in transverse field. Z. Phys. B, Condens. Matter 88, 333–338 (1992). [1.1, 1.3, 4.3] ADSCrossRefGoogle Scholar
  136. 365.
    Sengupta, K., Powell, S., Sachdev, S.: Quench dynamics across quantum critical points. Phys. Rev. A 69, 053616 (2004). [1.1, 1.3, 7.2.2.1] ADSCrossRefGoogle Scholar
  137. 366.
    Sengupta, K., Sen, D., Mondal, S.: Exact results for quench dynamics and defect production in a two-dimensional model. Phys. Rev. Lett. 100, 077204 (2008). [1.3, 10.2.3] ADSCrossRefGoogle Scholar
  138. 371.
    Skalyo, J., Frazer, B.C., Shirane, G.: Ferroelectric-mode motion in KD2PO4. Phys. Rev. B 1, 278–286 (1970). [1.3] ADSCrossRefGoogle Scholar
  139. 378.
    Stevens, K.W.H., van Eekelen, H.A.M.: Thermodynamic effects of spin-phonon coupling. Proc. Phys. Soc. 92(3), 680 (1967). [1.3] ADSCrossRefGoogle Scholar
  140. 379.
    Stinchcombe, R.B.: Ising model in a transverse field. i. Basic theory. J. Phys. C, Solid State Phys. 6(15), 2459 (1973). [1.1, 1.2.8, 1.3, 3.6.2, 6.7.2] ADSCrossRefGoogle Scholar
  141. 380.
    Stinchcombe, R.B.: Diluted quantum transverse Ising model. J. Phys. C, Solid State Phys. 14(10), 263 (1981). [1.3, 5.2] ADSCrossRefGoogle Scholar
  142. 381.
    Stinchcombe, R.B.: Exact scalings of pure and dilute quantum transverse Ising chains. J. Phys. C, Solid State Phys. 14(16), 2193 (1981). [1.3, 5.2] ADSCrossRefGoogle Scholar
  143. 382.
    Stinchcombe, R.B.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transition and Critical Phenomena, vol. VII, p. 151. Academic Press, New York (1983). [1.3, 5.1, 5.2, 6.7.2] Google Scholar
  144. 383.
    Stout, J.W., Chisholm, R.C.: Heat capacity and entropy of CuCl2 and CrCl2 from 11° to 300°K. magnetic ordering in linear chain crystals. J. Chem. Phys. 36(4), 979–991 (1962). [1.3] ADSCrossRefGoogle Scholar
  145. 385.
    Suzuki, M.: Relationship among exactly soluble models of critical phenomena. i. Prog. Theor. Phys. 46(5), 1337–1359 (1971). [1.1, 1.3, 3.1, 10.1.2] ADSzbMATHCrossRefGoogle Scholar
  146. 386.
    Suzuki, M.: Relationship between d-dimensional quantal spin systems and (d+1)-dimensional Ising systems. Prog. Theor. Phys. 56(5), 1454–1469 (1976). [1.1, 1.3, 3.1, 5.2, 8.7.2, 9.1.2, 9.2, 9.2.4, 9.2.5, 9.2.6] ADSzbMATHCrossRefGoogle Scholar
  147. 387.
    Suzuki, M.: In: Suzuki, M. (ed.) Quantum Monte Carlo Methods, p. 1. Springer, Heidelberg (1986). [1.1, 1.3, 3.1, 4.3, 6.5, 6.A.2] Google Scholar
  148. 389.
    Suzuki, S.: Cooling dynamics of pure and random Ising chains. J. Stat. Mech. Theory Exp. 2009(03), P03032 (2009). [1.3, 8.6] CrossRefGoogle Scholar
  149. 391.
    Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987). [1.3, 3.2] ADSCrossRefGoogle Scholar
  150. 397.
    Tanaka, K., Horiguchi, T.: Quantum statistical-mechanical iterative method in image restoration. Electron. Commun. Jpn. 83(3), 84 (2000). [1.3, 9.2, 9.2.5] CrossRefGoogle Scholar
  151. 401.
    Thirumalai, D., Li, Q., Kirkpatrick, T.R.: Infinite-range Ising spin glass in a transverse field. J. Phys. A, Math. Gen. 22(16), 3339 (1989). [1.3, 6.2, 6.5, 8.1] MathSciNetADSCrossRefGoogle Scholar
  152. 402.
    Trammell, G.T.: Magnetic ordering properties of rare-earth ions in strong cubic crystal fields. Phys. Rev. 131, 932–948 (1963). [1.3] ADSCrossRefGoogle Scholar
  153. 412.
    Villain, J., Bak, P.: Two-dimensional Ising model with competing interactions: floating phase, walls and dislocations. J. Phys. Fr. 42(5), 657–668 (1981). [1.1, 4.2, 4.A.3] CrossRefGoogle Scholar
  154. 415.
    Vojta, T.: Rare region effects at classical, quantum and nonequilibrium phase transitions. J. Phys. A, Math. Gen. 39(22), 143 (2006). [1.3, 5.1, 8.5.2] MathSciNetADSCrossRefGoogle Scholar
  155. 417.
    Walasek, K., Lukierska-Walasek, K.: Quantum transverse Ising spin-glass model in the mean-field approximation. Phys. Rev. B 34, 4962–4965 (1986). [1.3, 6.2] ADSCrossRefGoogle Scholar
  156. 418.
    Walasek, K., Lukierska-Walasek, K.: Cluster-expansion method for the infinite-range quantum transverse Ising spin-glass model. Phys. Rev. B 38, 725–727 (1988). [1.3, 6.3] ADSCrossRefGoogle Scholar
  157. 419.
    Wang, Y.L., Cooper, B.R.: Collective excitations and magnetic ordering in materials with singlet crystal-field ground state. Phys. Rev. 172, 539–551 (1968). [1.3] ADSCrossRefGoogle Scholar
  158. 420.
    Wielinga, R., Huiskamp, W.: The spontaneous magnetization of the B.C.C. Heisenberg ferromagnet Cu(NH4)2Br4.2H2O. Physica 40(4), 602–624 (1969). [1.3] ADSCrossRefGoogle Scholar
  159. 421.
    Wiesler, A.: A note on the Monte Carlo simulation of one dimensional quantum spin systems. Phys. Lett. A 89(7), 359–362 (1982). [1.3, 3.2, 6.3] ADSCrossRefGoogle Scholar
  160. 424.
    Wolf, W.P.: Anisotropic interactions between magnetic ions. J. Phys., Colloq. 32, C1-26–C1-33 (1971). [1.3] Google Scholar
  161. 427.
    Wu, W., Ellman, B., Rosenbaum, T.F., Aeppli, G., Reich, D.H.: From classical to quantum glass. Phys. Rev. Lett. 67, 2076–2079 (1991). [1.1, 1.3, 6.2.1, 7.1.3] ADSCrossRefGoogle Scholar
  162. 428.
    Wu, W., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quenching of the nonlinear susceptibility at a T=0 spin glass transition. Phys. Rev. Lett. 71, 1919–1922 (1993). [1.1, 1.3, 6.2.1] ADSCrossRefGoogle Scholar
  163. 429.
    Yamada, Y., Yamada, T.: Inter-dipolar interaction in NaNO2. J. Phys. Soc. Jpn. 21(11), 2167–2177 (1966). [1.3] ADSCrossRefGoogle Scholar
  164. 430.
    Yamada, Y., Fujii, Y., Hatta, I.: Dielectric relaxation mechanism in NaNO2. J. Phys. Soc. Jpn. 24(5), 1053–1058 (1968). [1.3] ADSCrossRefGoogle Scholar
  165. 431.
    Yamada, Y., Fujii, Y., Terauchi, H.: J. Phys. Soc. Jpn. Suppl. 28, 274 (1970). [1.3] CrossRefGoogle Scholar
  166. 433.
    Yamamoto, T., Ishii, H.: A perturbation expansion for the Sherrington-Kirkpatrick model with a transverse field. J. Phys. C, Solid State Phys. 20(35), 6053 (1987). [1.3, 6.2, 6.3, 9.2.5] ADSCrossRefGoogle Scholar
  167. 438.
    Young, A.P.: Quantum effects in the renormalization group approach to phase transitions. J. Phys. C, Solid State Phys. 8(15), L309 (1975). [1.1, 3.5, 3.6.2] ADSCrossRefGoogle Scholar
  168. 439.
    Young, A.P., Rieger, H.: Numerical study of the random transverse-field Ising spin chain. Phys. Rev. B 53, 8486–8498 (1996). [1.3, 5.3] ADSCrossRefGoogle Scholar
  169. 441.
    Young, A.P., Knysh, S., Smelyanskiy, V.N.: First-order phase transition in the quantum adiabatic algorithm. Phys. Rev. Lett. 104, 020502 (2010). [8.5.3.3] ADSCrossRefGoogle Scholar
  170. 445.
    Zurek, W.H., Dorner, U., Zoller, P.: Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005). [1.1, 1.3, 7.2.2] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sei Suzuki
    • 1
  • Jun-ichi Inoue
    • 2
  • Bikas K. Chakrabarti
    • 3
  1. 1.Dept. of Physics and MathematicsAoyama Gakuin UniversitySagamiharaJapan
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  3. 3.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations