Skip to main content

String Theory, Unification and Quantum Gravity

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 863))

Abstract

An overview is given of the way in which the unification program of particle physics has evolved into the proposal of superstring theory as a prime candidate for unifying quantum gravity with the other forces and particles of nature. A key concern with quantum gravity has been the problem of ultraviolet divergences, which is naturally solved in string theory by replacing particles with spatially extended states as the fundamental excitations. String theory turns out, however, to contain many more extended-object states than just strings. Combining all this into an integrated picture, called M-theory, requires recognition of the rôle played by a web of nonperturbative duality symmetries suggested by the nonlinear structures of the field-theoretic supergravity limits of string theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The D=4, L=7 situation requires special care [25]. At the linearized level, it would seem that the 8 R 4 candidate could be the first full-superspace non-BPS counterterm in D=4. The volume of superspace, \(\int d^{4}x d^{32}\theta\det(E_{M}^{A})\) would seem to be the obvious candidate. However, rather surprisingly, it turns out that this superspace volume vanishes subject to the classical field equations, so there is no need for such a counterterm in the renormalized action. Instead, what looks like a non-BPS 8 R 4 counterterm at the linearized level turns into a \(\frac{1}{8}\)-BPS counterterm at the full nonlinear level. This illustrates the important rôle that nonlinear structure can play in quantum gravity divergence analysis.

References

  1. M.H. Goroff, A. Sagnotti, The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266, 709 (1986)

    Article  ADS  Google Scholar 

  2. A.E.M. van de Ven, Two loop quantum gravity. Nucl. Phys. B 378, 309 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Deser, J.H. Kay, K.S. Stelle, Renormalizability properties of supergravity. Phys. Rev. Lett. 38, 527 (1977)

    Article  ADS  Google Scholar 

  4. S. Deser, B. Zumino, A complete action for the spinning string. Phys. Lett. B 65, 369 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Brink, P. Di Vecchia, P.S. Howe, A locally supersymmetric and reparametrization invariant action for the spinning string. Phys. Lett. B 65, 471 (1976)

    Article  ADS  Google Scholar 

  6. A.M. Polyakov, Quantum geometry of bosonic strings. Phys. Lett. B 103, 207 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. C.G. Callan Jr., E.J. Martinec, M.J. Perry, D. Friedan, Strings in background fields. Nucl. Phys. B 262, 593 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  8. T.H. Buscher, A symmetry of the string background field equations. Phys. Lett. B 194, 59 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Dai, R.G. Leigh, J. Polchinski, New connections between string theories. Mod. Phys. Lett. A 4, 2073 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Dine, P.Y. Huet, N. Seiberg, Large and small radius in string theory. Nucl. Phys. B 322, 301 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Cvetic, H. Lu, C.N. Pope, K.S. Stelle, T duality in the Green-Schwarz formalism, and the massless / massive IIA duality map. Nucl. Phys. B 573, 149 (2000). hep-th/9907202

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C.M. Hull, P.K. Townsend, Unity of superstring dualities. Nucl. Phys. B 438, 109 (1995). hep-th/9410167

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. E. Witten, String theory dynamics in various dimensions. Nucl. Phys. B 443, 85 (1995). hep-th/9503124

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. E.S. Fradkin, A.A. Tseytlin, Quantum string theory effective action. Nucl. Phys. B 261, 1 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein, J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences. Nucl. Phys. B 530, 401 (1998). hep-th/9802162

    Article  ADS  Google Scholar 

  16. Z. Bern, J.J.M. Carrasco, H. Johansson, Perturbative quantum gravity as a double copy of gauge theory. Phys. Rev. Lett. 105, 061602 (2010). arXiv:1004.0476 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  17. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson, R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes. arXiv:1201.5366 [hep-th]

  18. R. Britto, F. Cachazo, B. Feng, E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94, 181602 (2005). hep-th/0501052

    Article  ADS  MathSciNet  Google Scholar 

  19. Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson, R. Roiban, The ultraviolet behavior of N=8 supergravity at four loops. Phys. Rev. Lett. 103, 081301 (2009). arXiv:0905.2326 [hep-th]

    Article  ADS  Google Scholar 

  20. P.S. Howe, K.S. Stelle, P.K. Townsend, Superactions. Nucl. Phys. B 191, 445 (1981)

    Article  ADS  Google Scholar 

  21. R.E. Kallosh, Counterterms in extended supergravities. Phys. Lett. B 99, 122 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Bossard, P.S. Howe, K.S. Stelle, The ultra-violet question in maximally supersymmetric field theories. Gen. Relativ. Gravit. 41, 919 (2009). arXiv:0901.4661 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. G. Bossard, P.S. Howe, K.S. Stelle, A note on the UV behaviour of maximally supersymmetric Yang-Mills theories. Phys. Lett. B 682, 137 (2009). arXiv:0908.3883 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Bossard, C. Hillmann, H. Nicolai, E7(7) symmetry in perturbatively quantised N=8 supergravity. J. High Energy Phys. 1012, 052 (2010). arXiv:1007.5472 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. G. Bossard, P.S. Howe, K.S. Stelle, P. Vanhove, The vanishing volume of D=4 superspace. Class. Quantum Gravity 28, 215005 (2011). arXiv:1105.6087 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. M.B. Green, H. Ooguri, J.H. Schwarz, Nondecoupling of maximal supergravity from the superstring. Phys. Rev. Lett. 99, 041601 (2007). arXiv:0704.0777 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. M.B. Green, J.G. Russo, P. Vanhove, String theory dualities and supergravity divergences. J. High Energy Phys. 1006, 075 (2010). arXiv:1002.3805 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. H. Elvang, M. Kiermaier, Stringy KLT relations, global symmetries, and E 7(7) violation. J. High Energy Phys. 1010, 108 (2010). arXiv:1007.4813 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. N. Beisert, H. Elvang, D.Z. Freedman, M. Kiermaier, A. Morales, S. Stieberger, E7(7) constraints on counterterms in N=8 supergravity. Phys. Lett. B 694, 265 (2010). arXiv:1009.1643 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  30. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257 (1998). hep-ph/9804398

    Article  ADS  Google Scholar 

  31. E. D’Hoker, D.H. Phong, Two loop superstrings. 1. Main formulas. Phys. Lett. B 529, 241 (2002). hep-th/0110247

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. E. D’Hoker, D.H. Phong, Two loop superstrings. 2. The chiral measure on moduli space. Nucl. Phys. B 636, 3 (2002). hep-th/0110283

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. E. D’Hoker, D.H. Phong, Two loop superstrings. 3. Slice independence and absence of ambiguities. Nucl. Phys. B 636, 61 (2002). hep-th/0111016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. E. D’Hoker, D.H. Phong, Two loop superstrings 4: the cosmological constant and modular forms. Nucl. Phys. B 639, 129 (2002). hep-th/0111040

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. S. Mandelstam, The n loop string amplitude: explicit formulas, finiteness and absence of ambiguities. Phys. Lett. B 277, 82 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  36. N. Berkovits, Finiteness and unitarity of Lorentz covariant Green-Schwarz superstring amplitudes. Nucl. Phys. B 408, 43 (1993). hep-th/9303122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. N. Berkovits, Covariant quantization of the Green-Schwarz superstring in a Calabi-Yau background. Nucl. Phys. B 431, 258 (1994). hep-th/9404162

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. N. Berkovits, Quantization of the superstring with manifest U(5) superPoincare invariance. Phys. Lett. B 457, 94 (1999). hep-th/9902099

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). hep-th/9601029

    Article  ADS  MathSciNet  Google Scholar 

  40. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183 (2000). hep-th/9905111

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Stelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stelle, K.S. (2013). String Theory, Unification and Quantum Gravity. In: Calcagni, G., Papantonopoulos, L., Siopsis, G., Tsamis, N. (eds) Quantum Gravity and Quantum Cosmology. Lecture Notes in Physics, vol 863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33036-0_1

Download citation

Publish with us

Policies and ethics