Skip to main content

Dynamic Refuse Collection Strategy Based on Adjacency Relationship between Euler Cycles

  • Conference paper
Geographic Information Science (GIScience 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7478))

Included in the following conference series:

  • 2110 Accesses

Abstract

Our objective is to reduce the risk of overwork in the refuse collection procedure while keeping efficient routes. On optimum routes in refuse collection, vehicles pass through each road segment only once. When we look upon our road network as a graph, the optimum route is Euler graph. Euler graph consists of several Euler cycles. When Euler cycles are exchanged in Euler graph, these cycles are yet Euler cycles if the exchanged cycles are adjacent. Our idea is to construct the cycle graph, which represents cycles as nodes and connective relationships between adjacent cycles as links, from Euler graph. It is guaranteed that the cycle based on links in the cycle graph does not generate the redundancy. In the computer simulation, we conclude that our method is effectively applicable to many kinds of road networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golden, B.L., Wong, R.T.: Capaciated Arc Routing Problems. Networks 11, 305–315 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Golden, B.L., Dearmon, J.S., Baker, E.K.: Computational Experiments with Algorithms for a Class of Routing Problems. Computers and Operations Research 10(1), 47–59 (1983)

    Article  MathSciNet  Google Scholar 

  3. Ulusoy, G.: The Fleet Size and Mix Problem for Capacitated Arc Routing. European Journal of Operational Research 22(3), 329–337 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lacomme, P., Prins, C., Ramdane-Chérif, W.: A Genetic Algorithm for the Capacitated Arc Routing Problem and Its Extensions. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 473–478. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Hertz, A., Laporte, G., Mittaz, M.: A Tabu Search Heuristic for the Capacitated Arc Routing Problem. Operations Research 48(1), 129–135 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ralphs, T., Kopman, L., Pulleyblank, W., Trotter, L.: On the Capacitated Vehicle Routing Problem. Mathematical Programming 94(2/3), 343–359 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Longo, H., de Aragao, M.P., Uchoac, E.: Solving Capacitated Arc Routing Problems Using a Transformation to the CVRP. Computers and Operations Research 33, 1823–1837 (2006)

    Article  MATH  Google Scholar 

  8. Fleury, G., Lacomme, P., Prins, C.: Evolutionary Algorithms for Stochastic Arc Routing Problems. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 501–512. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Moscato, P., Cotta, C.: A Gentle Introduction to Memetic Algorithms. In: Handbook of Metaheuristics, pp. 105–144 (2003)

    Google Scholar 

  10. Fleury, G., Lacomme, P., Prins, C., Ramdane Cherif, W.: Improving Robustness of Solutions to Arc Routing Problem. Journal of the Operational Research Society 56, 526–538 (2006)

    Article  Google Scholar 

  11. Mourao, M.C., Amado, L.: Heuristic Method for a Mixed Capacitated Arc Routing. European Journal of Operational Research 160(1), 139–153 (2005)

    Article  MATH  Google Scholar 

  12. Mourao, M.C., Almeida, M.T.: Lower-bounding and Heuristic Methods for a Refuse Collection Vehicle Routing Problem. European Journal of Operational Research 121(2), 420–434 (2000)

    Article  MATH  Google Scholar 

  13. Graham, R.L., Hell, P.: On the History of the Minimum Spanning Tree Problem. IEEE Ann. Hist. Comput. 7(1), 43–57 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. http://www.vv.es/belenguer/mcarp

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Watanabe, T., Yamamoto, K. (2012). Dynamic Refuse Collection Strategy Based on Adjacency Relationship between Euler Cycles. In: Xiao, N., Kwan, MP., Goodchild, M.F., Shekhar, S. (eds) Geographic Information Science. GIScience 2012. Lecture Notes in Computer Science, vol 7478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33024-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33024-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33023-0

  • Online ISBN: 978-3-642-33024-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics