Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 189))

Abstract

Clustering algorithms belong to a category of unsupervised learning methods which aim to discover underlying structure in a dataset without given labels. We carry out research of methods for an analysis of a biological time series signals, putting stress on global patterns found in samples. When clustering raw time series data, high dimensionality of input vectors, correlation of inputs, shift or scaling sensitivity often deteriorates the result. In this paper, we propose to represent time series signals by various parametric models. A significant parameters are determined by means of heuristic methods and selected parameters are used for clustering. We applied this method to the data of cell’s impedance profiles. Clustering results are more stable, accurate and computationally less expensive than processing raw time series data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  2. Bifulco, I., Fedullo, C., Napolitano, F., Raiconi, G., Tagliaferri, R.: Global optimization, meta clustering and consensus clustering for class prediction. In: Proceedings of the 2009 International Joint Conference on Neural Networks, IJCNN 2009, pp. 1463–1470. IEEE Press, Piscataway (2009)

    Google Scholar 

  3. Caruana, R., Elhawary, M., Nguyen, N., Smith, C.: Meta clustering. In: Proceedings of the Sixth International Conference on Data Mining, ICDM 2006, pp. 107–118. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  4. Guyon, I., Luxburg, U.V., Williamson, R.C.: Clustering: Science or art. In: NIPS 2009 Workshop on Clustering Theory (2009)

    Google Scholar 

  5. Golay, X., Kollias, S., Stoll, G., Meier, D., Valavanis, A., Boesiger, P.: A new correlation-based fuzzy logic clustering algorithm for fmri. Magnetic Resonance in Medicine 40(2), 249–260 (1998)

    Article  Google Scholar 

  6. Möller-Levet, C.S., Klawonn, F., Cho, K.-H., Wolkenhauer, O.: Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points. In: Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 330–340. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Wilpon, J.G., Rabiner, L.R.: A modified k-means clustering algorithm for use in speaker-independent isolated word recognition. The Journal of the Acoustical Society of America 75, S93 (1984)

    Article  Google Scholar 

  8. Liao, T.W.: Clustering of time series data – a survey. Pattern Recognition 38(11), 1857–1874 (2005)

    Article  MATH  Google Scholar 

  9. Abassi, Y.A., Xi, B., Zhang, W., Ye, P., Kirstein, S.L., Gaylord, M.R., Feinstein, S.C., Wang, X., Xu, X.: Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem. Biol. 16(7), 712–723 (2009)

    Article  Google Scholar 

  10. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  11. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds.) Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

    Google Scholar 

  12. Lance, G.N., Williams, W.T.: A general theory of classificatory sorting strategies. The Computer Journal 9(4), 373–380 (1967)

    Google Scholar 

  13. Sokal, R.R., Rohlf, F.J.: The comparison of dendrograms by objective methods. Taxon 11(2), 33–40 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartoň, T., Kordík, P. (2013). Encoding Time Series Data for Better Clustering Results. In: Herrero, Á., et al. International Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions. Advances in Intelligent Systems and Computing, vol 189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33018-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33018-6_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33017-9

  • Online ISBN: 978-3-642-33018-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics