Skip to main content

Correlation-Based Neural Gas for Visualizing Correlations between EEG Features

  • Conference paper
Book cover International Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 189))

  • 1848 Accesses

Abstract

Feature selection is an important issue in an automated data analysis. Unfortunately the majority of feature selection methods does not consider inner relationships between features. Furthermore existing methods are based on a prior knowledge of a data classification. Among many methods for displaying data structure there is an interest in self organizing maps and its modifications. Neural gas network has shown surprisingly good results when capturing the inner structure of data. Therefore we propose its modification (correlation - based neural gas) and we use this network to visualize correlations between features. We discuss the possibility to use this additional information for fully automated unsupervised feature selection where no classification is available. The algorithm is tested on the EEG data acquired during the mental rotation task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. JMLR 5, 1205–1224 (2004)

    MATH  Google Scholar 

  2. Liu, H., Motoda, H.: Feature selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Boston (1998)

    Book  MATH  Google Scholar 

  3. Whiteney, A.W.: A direct method of nonparametric measurement selection. IEEE Trans. Comp. 20, 1100–1103 (1971)

    Article  Google Scholar 

  4. Marill, T., Green, D.M.: On the effectiveness of receptors in recognition systems. IEEE Trans. IT 9, 11–17 (1963)

    Article  Google Scholar 

  5. Pudil, P., Novovièová, K.J.: Floating search methods in feature selection. Patt. Rec. Letters 15, 1119–1125 (1994)

    Article  Google Scholar 

  6. Stearns, S.D.: On selecting features for pattern classifiers. In: 3rd Int. Conf. on Patt. Rec., pp. 71–75 (1976)

    Google Scholar 

  7. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  8. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  9. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  10. Vafaie, H., DeJong, K.: Genetic algorithms as a tool for restructuring feature space representations. In: Proceedings 7th Int Conf. of Tools with AI. IEEE Computer Society Press, New York (1995)

    Google Scholar 

  11. Liu, H., Setino, R.: A probabilistic approach to feature selection. In: ML Proceedings 13th ICML, pp. 319–327 (1996)

    Google Scholar 

  12. Skalak, D.B.: Prototype and feature selection by sampling and random mutation hill climbing. In: ML Proceedings 11th ICML, pp. 293–301 (1994)

    Google Scholar 

  13. Yao, J.: Feature selection for fluoresence image classification. KDD Lab Proposal. Carregie Mellon University (2001)

    Google Scholar 

  14. Štìpánová, K., Vavreèka, M.: Improved initialization of clusters in greedy GMM for Neural modeling fields (submitted, 2012)

    Google Scholar 

  15. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, UK (1994)

    Book  Google Scholar 

  16. Eades, P.: A Heuristic for graph drawing. congressus Numerantium 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  17. Mutton, P.: Force directed layout of diagrams. PhD thesis. University of Kent, Canterbury (2005)

    Google Scholar 

  18. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph models for social networks. Social Networks 29, 173–191 (2007), doi:10.1016/j.socnet.2006.08.002

    Article  Google Scholar 

  19. Martinetz, T., Schulten, K.: The ”Neural gas” network learns topologies. Artificial Neural Networks 1, 397–402 (1991)

    Google Scholar 

  20. Heidemann, G.: Efficient Vector Quantization Using the WTA-Rule with Activity Equalization. Neural Processing Letters 13(1), 17–30 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Štépánová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Štépánová, K., Macaš, M., Lhotská, L. (2013). Correlation-Based Neural Gas for Visualizing Correlations between EEG Features. In: Herrero, Á., et al. International Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions. Advances in Intelligent Systems and Computing, vol 189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33018-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33018-6_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33017-9

  • Online ISBN: 978-3-642-33018-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics