Evaluation of GNSS Monument Stability

  • R. HaasEmail author
  • S. Bergstrand
  • W. Lehner
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 138)


We report on an evaluation of the stability of four different GNSS monuments that was conducted in the summer of 2010. The monuments were monitored by forward intersections using a survey system consisting of two robotic total stations and a set of retro reflecting prisms. The system was operated for almost 3 months, performing observations in two faces with a repetition cycle of 5min. Movements in excess of 6 mm were detected. The results show clear evidence that the detected deformations are related to variations in temperature and solar radiation and can be suppressed by simple shielding of the monument. Furthermore, our project is a step towards the realization of continuous cartesian connections at geodetic fundamental stations.


Geodetic monitoring GNSS monuments Local-tie monitoring Fundamental geodetic stations Global geodetic observing system (GGOS) Co-located space geodetic techniques Continuous cartesian connections (CCC) 



We thank Christer Thunell from Leica Geosystems Sweden, Magnus Herbertsson from SP Technical Research Institute of Sweden, Lasse Wennerbäck, Christer Hermansson, and Håkan Millqvist from the OSO workshop for their support.


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112:B09401. doi: 10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Beavan J (2005) Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments. J Geophys Res 110:B08410. doi: 10.1029/2005JB003642 CrossRefGoogle Scholar
  3. Bergstrand S, Scherneck H-G, Lidberg M, Johansson JM (2005) BIFROST: noise properties of GPS time series. Dyn Planet Int Assoc Geodesy Symp 130(II):123–130. doi: 10.1007/978-3-540-49350-1_20, 2007Google Scholar
  4. Bergstrand S, Haas R (2011) Can Continuous Cartesian Connections realize local ties at 0.1 mm level? Proc. of the 17th International Workshop on Laser Ranging – Extending the Range –, edited by U. Schreiber, M. Pearlman and G. Appleby, Mitteilungen des Bundesamts für Kartographie und Geodäsie,
  5. Haas R, Bergstrand S (2010) COLD MAGICS—continuous local deformation monitoring of an arctic geodetic fundamental station. In: Behrend D, Baver KD (eds) International VLBI service for geodesy and astrometry 2010 general meeting proceedings, NASA Conference Publication, NASA/CP-2010Ð215864, pp 118–120Google Scholar
  6. Haas R, Bergstrand S (2012) Continuous Cartesian connections at geodetic collocation sites. in preparationGoogle Scholar
  7. Langbein J (2008) Noise in GPS displacement measurements from Southern California and Southern Nevada. J Geophys Res 113:B05405. doi: 10.1029/2007JB005247 CrossRefGoogle Scholar
  8. Lehner W (2011) Evaluation of environmental stress on GNSS-monuments. M.Sc. thesis, Chalmers University of Technology and Technical University of Vienna,
  9. Michigan Department of Transportation (2011).
  10. Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geodesy 79:189–195. doi: 10.1007/s00190-005-0456-z CrossRefGoogle Scholar
  11. UNAVCO Resources: GNSS Station Monumentation (2011).
  12. Rothacher M, Beutler G, Bosch W, Donnellan A, Gross R, Hinderer J, Ma C, Pearlman M, Plag H-P, Richter B, Ries J, Schuh H, Seitz F, Shum CK, Smith D, Thomas M, Velacognia E, Wahr J, Willis P, Woodworth P (2009) The future global geodetic observing system. In: Plag H-P, Pearlman M (eds) Global geodetic observing system. Springer, Heidelberg/Berlin, pp 237–272. doi: 10.1007/978-3-642-02687-49 CrossRefGoogle Scholar
  13. Rummel R, Rothacher M, Beutler G (2005) Integrated global geodetic observing system (IGGOS)—science rationale. J Geodyn 40:357–362CrossRefGoogle Scholar
  14. Scherneck H-G, Johansson JM, Elgered G, Davis JL, Jonsson B, Hedling G, Koivula H, Ollikainen M, Poutanen M, Vermeer M, Mitrovica JX, Milne GA (2002) BIFROST: observing the three-dimensional deformation of fennoscandia. In: Mitrovica JX, Vermeersen BLA (eds) Glacial isostatic adjustment and the Earth system, Geodynamics series. American Geophysical Union, Washington, DC, pp 69–93Google Scholar
  15. Scherneck H-G, Johansson JM, Koivula H, van Dam T, Davis JL (2003) Vertical crustal motion observed in the BIFROST project. J Geodyn 35:425–441. doi: 10.1016/S0264-3707(03)00005-X CrossRefGoogle Scholar
  16. SWEPOS (2011) A national network of reference stations for GPS.
  17. Williams SDP, Bock Y, Fang P, Jamason P, NikolaidisR M, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109:B03412. doi: 10.1029/2003JB002741 CrossRefGoogle Scholar
  18. Zogg H-M, Lienhart W, Nindl D (2009) Leica TS30 white paper. Leica Geosystems AG, Heerbrugg, Switzerland.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Earth and Space SciencesChalmers University of TechnologyOnsalaSweden
  2. 2.SP Technical Research Institute of Sweden, Measurement TechnologyBoråsSweden
  3. 3.Institute of Geodesy and GeophysicsVienna University of TechnologyWienAustria

Personalised recommendations