External Evaluation of the Origin and Scale of the International Terrestrial Reference Frame

  • X. CollilieuxEmail author
  • Z. Altamimi
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 138)


The International Terrestrial Reference Frame (ITRF) datum definition is of primary importance for many Earth Science Applications. While accurate origin information (Earth Center of Mass) is required for any precise satellite orbit determination, an accurate scale is indispensable for various calibrations (altimeter absolute bias, GNSS satellite antenna phase center offsets). Studies involving vertical motion determination, such as mean sea level and Glacial Isostatic Adjustment (GIA) are also affected by the choice of the underlying Terrestrial Reference Frame. ITRF datum accuracy evaluation has been traditionally performed by comparing independent space geodetic technique performances and successive ITRF solutions. While the ITRF2005 to ITRF2000 comparison may lead to pessimistic evaluation of the ITRF datum accuracy, the question is raised whether the error budget deduced from the ITRF2008 to ITRF2005 comparison would be optimistic, especially for the time evolution of the origin. It is fundamental to explore external ways to evaluate the ITRF frame parameters and especially their time evolution which impacts the results of many climatic studies. The state of art of available methods is reviewed by stressing their advantages and drawbacks. Most of them have been already implemented and show that the ITRF2005 origin rate is probably reliable at the millimeter per year level. However these methods have been applied on different velocity field with different models and required assumptions which make their mutual comparison difficult. Thus, new analyses are required in the future.


Terrestrial reference system Terrestrial reference frame 


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112:B09401. doi: 10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  3. Argus DF (2007) Defining the translational velocity of the reference frame of Earth. Geophys J Int 169:830–838. doi: 10.1111/j.1365-246X.2007.03344.x CrossRefGoogle Scholar
  4. Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ, Willis P, Peltier WR, Owen SE (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys J Int 180(3):916–960. doi: 10.1111/j.1365-246X.2009.04463.x CrossRefGoogle Scholar
  5. Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34:L14608. doi: 10.1029/2007GL030002 CrossRefGoogle Scholar
  6. Bouin M-N, Wöppelmann G (2010) Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophys J Int 180. doi: 10.1111/j.1365-246X.2009.04411.x
  7. Cazenave A, Dominh K, Ponchaut F, Soudarin L, Crétaux JF, Le Provost C (1999) Sea level changes from Topex-Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS. Geophys Res Lett 26(14):2077–2080. doi: 10.1029/1999GL900472 CrossRefGoogle Scholar
  8. Collilieux X, Schmid R (2012) Evaluation of the ITRF2008 GPS vertical velocities using satellite antenna z-offsets. GPS solutions, online first. doi: 10.1007/s10291-012-0274-8
  9. Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference frame. J Geodesy 85(1):9–22. doi: 10.1007/s00190-010-0412-4 CrossRefGoogle Scholar
  10. Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2010) Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solut 15(3):219–231. doi: 10.1007/s10291-010-0184-6 CrossRefGoogle Scholar
  11. Kogan MG, Steblov GM (2008) Current global plate kinematics from GPS (1995–2007) with the plate-consistent reference frame. J Geophys Res 113:B12. doi: 10.1029/2007JB005353 CrossRefGoogle Scholar
  12. Kuo C, Shum CK, Braun A, Mitrovica JX (2004) Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophys Res Lett 31:L01608. doi: 10.1029/2003GL019106 CrossRefGoogle Scholar
  13. Lambert A, Courtier N, James TS (2006) Long-term monitoring by absolute gravimetry: tides to postglacial rebound. J Geodyn 41:307–317. doi: 10.1016/j.jog.2005.08.032 CrossRefGoogle Scholar
  14. Mazzotti S, Lambert A, Courtier N, Nykolaishen L, Dragert H (2007) Crustal uplift and sea level rise in northern Cascadia from GPS, absolute gravity and tide gauge data. Geophys Res Lett 34. doi: 10.1029/2007GL030283
  15. Mitchum GT (2000) An improved calibration of satellite altimetric heights using tide Gauge Sea levels with adjustment for land motion. Mar Geod 23(3):145–166. doi: 10.1080/01490410050128591 CrossRefGoogle Scholar
  16. Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36(3):358–368. doi: 10.1016/j.asr.2005.05.113 CrossRefGoogle Scholar
  17. Nerem RS, Mitchum GT (2002) Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. Geophys Res Lett 29(19):40–41. doi: 10.1029/2002GL015037 CrossRefGoogle Scholar
  18. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) Model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi: 10.1146/ CrossRefGoogle Scholar
  19. Plag HP, Pearlman M (eds) (2009) Global geodetic observing system. Meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin (ISBN: 978-3-642-02686-7)Google Scholar
  20. Plag HP, Hammond W, Kreemer C (2007) Combination of GPS-derived vertical motion with absolute gravity changes constrain the tie between reference frame origin and Earth center of mass. EarthScope National Meeting, MontereyGoogle Scholar
  21. Ray RD, Beckley BD, Lemoine FG (2010) Vertical crustal motion derived from satellite altimetry and tide gauges, and comparisons with DORIS measurements. Adv Space Res. doi: 10.1016/j.asr.2010.02.020
  22. Richter B, Zerbini S, Matonti F, Simon D (2004) Long-term crustal deformation monitored by gravity and space techniques at Medicina, Italy and Wettzell, Germany. J Geodyn 38:281–292. doi: 10.1016/j.jog.2004.07.013 CrossRefGoogle Scholar
  23. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81:781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  24. Teferle FN, Bingley RM, Orliac EJ, Williams S, Woodworth PL, McLaughlin D, Baker T, Shennan I, Milne GA, Bradley SL, Hansen DN (2009) Crustal motions in Great Britain: evidence from continuous GPS, absolute gravity and Holocene sea level data. Geophys J Int 178:23–46. doi: 10.1111/j.1365246X.2009.04185.x CrossRefGoogle Scholar
  25. van Camp M, Williams S, Francis O (2005) Uncertainty of absolute gravity measurements. J Geophys Res 110:B9. doi: 10.1029/2004JB003497 Google Scholar
  26. Vanicek P, Krakiwsky E (1986) Geodesy: the concepts, 2nd edn. Elsevier, New YorkGoogle Scholar
  27. Wu X, Heflin MB, Schotman H, Vermeersen B, Dong D, Gross RS, Ivins E, Moore A (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci. doi: 10.1038/NGEO938

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.IGN/LAREG and GRGSUniversité Paris DiderotParisFrance

Personalised recommendations