Advertisement

Geocenter Variations from Analysis of SLR Data

  • M. K. ChengEmail author
  • J. C. Ries
  • B. D. Tapley
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 138)

Abstract

The Earth’s center of mass (CM) is defined in the satellite orbit dynamics as the center of mass of the entire Earth system, including the solid earth, oceans, cryosphere and atmosphere. Satellite Laser Ranging (SLR) provides accurate and unambiguous range measurements to geodetic satellites to determine variations in the vector from the origin of the ITRF to the CM. Estimates of the Global mass redistribution induced geocenter variations at seasonal scales from SLR are in good agreement with the results from the global inversion from the displacements of the dense network of GPS sites and from ocean bottom pressure model and GRACE-derived geoid changes.

Keywords

Geocenter Satellite laser ranging (SLR) Center of mass 

Notes

Acknowledgments

This research was supported by NASA grants NNX08AE99E and JPL1368074.

References

  1. Altamimi Z, Collilieux X, Métivier L (2010) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy. doi: 10.1007/s00190-011-04444-4
  2. Angermann D, Müller H (2008) On the strengths of SLR observations to realize the scale and origin of the terrestrial reference system. In: Sideris MG (ed) Observing our changing earth: Proceedings of the 2007 IAG General Assembly, vol 133, pp 21–29. Springer, Perugia, 2–13 July 2007Google Scholar
  3. Bettadpur S (2007) UTCSR level-2 processing standards document for level-2 product release 0004, GRACE 327-742, ftp://podaac-ftp.jpl.nasa.gov/allData/grace/
  4. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103. doi: 10.1029/2002JB002082 CrossRefGoogle Scholar
  5. Blewitt G, Clarke P (2003) Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J Geophys Res 108(B6):2311. doi: 10.1029/2002JB002290 CrossRefGoogle Scholar
  6. Chao BF, O’Connor WP, Change ATC, Hall DY, Foster J (1987) Sno load effects on the Earth’s rotation and Gravitational field, 1979–1985. J Geophys Res 92(B9):9415–9422CrossRefGoogle Scholar
  7. Chen JL, Wilson CR, Eanes RJ, Nerem RS (1999) Geophysical interpretation of observed geocenter variations. J Geophys Res 104:2683–2690CrossRefGoogle Scholar
  8. Cheng MK, Ries J (2009) Monthly estimates of C20 from 5 SLR satellites, GRACE Technical Note 05, ftp://podaac.jpl.nasa.gov/allData/grace/docs/TN-05_C20_SLR.txt
  9. Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409. doi: 10.1029/2010JB000850 CrossRefGoogle Scholar
  10. Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114:B04402. doi: 10.1029/2008JB005727 CrossRefGoogle Scholar
  11. Coulot D, Bério Ph, Bonnefond P, Exertier P, Féraudy D, Laurain O, Deleflie F (2009) Satellite laser ranging biases and terrestrial reference frame scale factor, observing our changing earth. Proceedings of the 2007 IAG general assembly, vol 133, pp 39–46. Springer, IAG, Perugia, 2–13 July 2007Google Scholar
  12. Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870CrossRefGoogle Scholar
  13. Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108:B42200. doi: 10.1029/2002JB002035 Google Scholar
  14. Eanes RJ, Kar S, Bettadpur SV, Watkins MM (1997) Low-frequency geocenter motion determined from SLR tracking data. Eos Trans AGU, 78(46), Fall meeting, Supplementary, F156Google Scholar
  15. Farrell WE (1972) Deformation of the Earth by surface loading. Rev Geophys Space Phys 10:761–797CrossRefGoogle Scholar
  16. Greff-Lefftz M (2000) Secular variation of the geocenter. J Geophys Res 105(B11):25685–25692CrossRefGoogle Scholar
  17. Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman and Co., San Francisco/LondonGoogle Scholar
  18. Jansen MJF, Kusche J, Schrama EJO (2006) Low-degrees load harmonics coefficients from combining GRACE, GPS time series and a priori dynamics. In: Proceedings IAG symposium, 2006Google Scholar
  19. Jansen MJF, Gunter BC, Kusche J (2009) The impact of GRACE, GPS and OBP data on estimates of global mass redistribution. Geophys J Int 177:1–13. doi: 10.1111/j.1356-246X.2008.04031x CrossRefGoogle Scholar
  20. Kar S (1997) Long-period variations in the geocenter observed from laser tracking of multiple satellites, CSR report CSR-97-2, The University of Texas Center for Space Research, Mail stop R1000, Austin, TXGoogle Scholar
  21. Kusche J, Schrama E (2005) Surface mass redistribution inversion from global GPS: a unified observation model. J Geophys Res 110:B09409. doi: 10.1029/2004JB003556 CrossRefGoogle Scholar
  22. Lambeck K (1988) Geophysical geodesy. Clarendon, OxfordGoogle Scholar
  23. McCarthy DD, Petit G (2003) IERS conventions (2003) IERS technical note no. 32, International earth rotation and reference systems service. Frankfurt, GermanyGoogle Scholar
  24. Métivier L, Grefftz-Lefftz M, Atamimi Z (2010) On secular geocenter motion: the impact of climate changes. Earth Planet Sci Lett 296(3–4):360–366. doi: 10.1016/j.epsl.2010.05.021 CrossRefGoogle Scholar
  25. Pavlis EC (2002) Dynamical determination of origin and scale in the earth system from satellite laser ranging. In: Adam J, Schwarz K-P (eds) Vistas for geodesy in the new millennium. Springer, New York, pp 36–41Google Scholar
  26. Pavlis EC, Kuzmicz-Cieslak M (2009) Geocenter motion: causes and modeling approaches. In: Schillack S (ed) Proceedings of 16th international laser workshop, Poznan pp 16–26Google Scholar
  27. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008, 2008 general assembly of the European geosciences union, Vienna, AustriaGoogle Scholar
  28. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International laser ranging service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  29. Petit G, Luzum B, IERS Conventions (2010) IERS technical note no. 36, international earth rotation and reference systems service. Frankfurt, GermanyGoogle Scholar
  30. Ray J (ed) (1999) IERS analysis campaign to investigate motions of the geocenter, IERS technical note 25, Observatoire de Paris, ParisGoogle Scholar
  31. Ries J (2007) Satellite laser ranging and the terrestrial reference frame: principal sources of uncertainty in the determination of the scale, Geophys Res Abst 9:10809, EGU General Assembly, Vienna, 15–20 April 2007 [SRef-ID: 1607-7962/gra/EGU2007-A-10809]Google Scholar
  32. Ries J (2008) LPOD2005: a practical realization of ITRF2005 for SLR-based POD, Ocean Surface topography science team meeting, 10–12 Nov 2008, Nice, France; available at ftp.csr.utexas.edu/pub/jason/models/coordsGoogle Scholar
  33. Torge W (1980) Geodesy, De Gruyter, New YorkGoogle Scholar
  34. Trupin AS, Meier MF, Wahr J (1992) Effects of melting glaciers on the Earth’s rotation and gravitational field: 1965–1984. Geophys J Int 108:1–15CrossRefGoogle Scholar
  35. van Dam T, Wahr JM, Lavallée D (2007) A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe. J Geophys Res 114:B04402. doi: 10.1029/2006JB004335 Google Scholar
  36. Wahr J, Molenar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30,205–30,229Google Scholar
  37. Watkins MM, Eanes RJ (1997) Observations of tidally coherent diurnal and semi-diurnal variations in the geocenter. Geophys Res Lett 24:2231–2234CrossRefGoogle Scholar
  38. Wu X, Argus D, Heflin M, Ivins E, Webb F (2003) Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data. Geophys Res Lett 30(14):1742. doi: 10.1029/2003GL017546 CrossRefGoogle Scholar
  39. Wu X, Heflin M, Ivins E, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellites geodetic data. J Geophys Res 111:B09401. doi: 10.1029/2005JB004100 CrossRefGoogle Scholar
  40. Wu X, Heflin M, Schotman H, Vermeersen B, Dong D, Gross R, Ivins E, Moore A, Owen S (2010a) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci. doi: 10.1038/NGEO938
  41. Wu X, Collilieux X, Altamimi Z (2010b) Data sets and inverse strategies for global surface mass variations. Geophys Res Abstr 12, EGU2010-5484, http://meetingorganizer.copernicus.org/EGU2010/EGU2010-5484.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Center for Space ResearchUniversity of Texas at AustinAustinUSA

Personalised recommendations