Advertisement

Improving SIRGAS Ionospheric Model

  • C. BruniniEmail author
  • F. Azpilicueta
  • M. Gende
  • E. Camilion
  • E. Gularte
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 138)

Abstract

The IAG Sub-Commission 1.3b, SIRGAS (Sistema de Referencia Geocéntrico para las Américas), operates a service for computing regional ionospheric maps based on GNSS observations from its Continuously Operating Network (SIRGAS-CON). The ionospheric model used by SIRGAS (named La Plata Ionopsheric Model, LPIM), has continuously evolved from a “thin layer” simplification for computing the vTEC distribution to a formulation that approximates the electron density (ED) distributions of the E, F1, F2 and top-side ionospheric layers.

This contribution presents the newest improvements in the model formulation and validates the obtained results by comparing the computed vTEC to experimental values provided by the ocean altimetry Jason 1 mission. Comparisons showed a small underestimation of the Jason 1 vTEC by about 1.3 TECu on average and rather small differences ranging from −0.5 to −3.4 TECu (at 95 % probability level). The results are encouraging given that comparisons were made in the open ocean regions (far away from the SIRGAS-CON stations).

Keywords

Ionosphere GNSS SIRGAS 

References

  1. Azpilicueta F, Brunini C, Radicella SM (2005) Global ionospheric maps from GPS observations using modip latitude. Adv Space Res 38(11):2324–2331CrossRefGoogle Scholar
  2. Bilitza D (2002) Ionospheric models for radio propagation studies. Chapter 28. In: W. Ross Stone (ed.) The Review of Radio Science 1999–2002. Wiley Interscience, ISBN 0-471-26866-6, pp 625–679Google Scholar
  3. Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609CrossRefGoogle Scholar
  4. Bilitza D, Sheik NM, Eyfrig R (1979) A global model for the height of the F2-peak using M3000 values from CCIR. Telecommun J 46:549–553Google Scholar
  5. Brunini C, Azpilicueta F, Gende M, Aragón-Ángel A, Hernández-Pajares M, Juan JM, Sanz J (2011a) Toward a SIRGAS service for mapping the ionosphere’s electron density distribution. In: Pacino C et al. (eds) Geodesy for planet earth, IAG symposia, vol 135, Buenos Aires, Argentina, 31 August 31 – 4 September 2009, pp. 575–580, ISBN 978-3-642-20338-1, SpringerGoogle Scholar
  6. Brunini C, Azpilicueta F, Gende M, Camilion E, Aragón Ángel A, Hernandez-Pajares M, Juan M, Sanz J, Salazar D (2011b) Ground- and space-based GPS data ingestion into the NeQuick model. J Geod 18(12):931–939CrossRefGoogle Scholar
  7. Brunini C, Sánchez L, Drewes H, Costa S, Mackern V, Martínez W, Seemüller W, da Silva A (2011c) Improved analysis strategy and accessibility of the SIRGAS Reference Frame. In: Pacino C et al. (eds) Geodesy for planet Earth, IAG symposia, vol 135, Buenos Aires, Argentina, 31 August 31 – 4 September 2009, pp 3–8, ISBN 978-3-642-20338-1, SpringerGoogle Scholar
  8. Brunini C, Meza A, Bosch W (2005) Temporal and spatial variability of the bias between TOPEX and GPS derived TEC. J Geod 79:175–188. doi: 10.1007/s00190-005-0448-z CrossRefGoogle Scholar
  9. CCIR (1991) Report 340–6. Comité Consultatif International des Radio communications, Genève, SwitzerlandGoogle Scholar
  10. Chapman S (1931) The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. In: Proceedings of the physical society, vol 43, pp 483–501. doi: 10.1088/0959-5309/43/5/302.
  11. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicela SM (2007) Calibration errors on experimental slant total electron content determined with GPS. J Geod 81(2):111–120CrossRefGoogle Scholar
  12. Codrescu MV, Beierle KL, Fuller-Rowell TJ (2001) More total electron content climatology from TOPEX/Poseidon measurements. Radio Sci 36(2):325–333CrossRefGoogle Scholar
  13. Delay S, Doherty P (2004) A decade of ionospheric measurements from the TOPEX/Poseidon mission. Contribution to the International Beacon Satellite Symposium, Trieste, October 18–22Google Scholar
  14. Dudeney JR (1974) A simple empirical method for estimating the height of the F2-layer at the Argentine Islands Graham Land. Science report no. 88, London, British Antarctic SurveyGoogle Scholar
  15. Hernandez-Pajares M (2003) Performance of IGS ionosphere TEC maps. Presented at 22nd IGS Governing Board Meeting, Nice, 6 April 2003Google Scholar
  16. Hernández-Pajares M, Juan JM, Sanz J (2000) Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys Res Lett 27(16):2473–2476CrossRefGoogle Scholar
  17. Hernández-Pajarez M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83:263–275CrossRefGoogle Scholar
  18. Menard Y, Haines B (2001) Jason-1 CALVAL plan, JPL Ref: TP2-J0-PL-974-CN (PO.DAAC)Google Scholar
  19. Nava B, Coïsson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. J Atmos Sol Terr Phys. doi: 10.1016/j.jastp.2008.01.015,1856-1862
  20. Reinisch BW, Huang X (2001) Deducing topside profiles and total electron content from bottomside ionograms. Adv Space Res 27(1):23–30CrossRefGoogle Scholar
  21. Rocken C, Kuo YH, Schreiner W, Hunt D, Sokolovsky S (2000) COSMIC system description. Spec Iss Terr Atmos Ocean Sci 11(1):21–52Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Brunini
    • 1
    Email author
  • F. Azpilicueta
    • 1
  • M. Gende
    • 1
    • 2
  • E. Camilion
    • 1
  • E. Gularte
    • 1
  1. 1.GESA, Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina

Personalised recommendations