Advertisement

Systematic Errors of a VLBI Determined TRF Investigated by Simulations

  • L. PlankEmail author
  • H. Spicakova
  • J. Böhm
  • T. Nilsson
  • A. Pany
  • H. Schuh
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 138)

Abstract

In this study, we investigate the influence of different analysis setup options for the processing of VLBI measurement data from 2002 until 2010 to derive the terrestrial reference frame (TRF). For estimating the consequent changes of the TRF, the simulation tool of the Vienna VLBI Software (VieVS) is used by applying different a priori models. We show that neglecting atmosphere loading causes a systematic annual scale variation of±0.3 mm, and that the application of the cubic model recommended in the most recent IERS Conventions for the mean pole introduces a scale change of −0.6mm over 8.5years. The effects of antenna thermal deformation on the TRF are±0.5 to 1mm/year in translation and±2 mm/year in scale. No systematic effects are found for the different troposphere mapping functions tested. Besides systematic, annual, and episodic impacts on the coordinates, we focus on possible changes in the scale of the reference frames.

Keywords

Terrestrial reference frame VLBI analysis Vienna VLBI software VieVS 

Notes

Acknowledgements

The authors would like to thank the editor and the two reviewers for their useful advice and help to improve our paper. This contribution to the REFAG 2010 was enabled by the receipt of the IAG Travel Award for Lucia Plank. Hana Spicakova is recipient of financial support during her PhD study at TU Vienna by Mondi Austria Privatstiftung and Andrea Pany receives a DOC-fForte fellowship of the Austrian Academy of Sciences at the Institute of Geodesy and Geophysics, Vienna University of Technology. Tobias Nilsson is grateful to the Deutsche Forschungsgemeinschaft (DFG) (project SCHUH 1103/3-2).

References

  1. Böckmann S, Artz T, Nothnagel A (2009) VLBI terrestrial reference frame contributions to ITRF2008. J Geodesy 84(3):201–219. doi: 10.1007/s00190-009-0357-7 CrossRefGoogle Scholar
  2. Böhm J, Werl B, Schuh H (2006a) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi: 10.1029/2005JB003629 CrossRefGoogle Scholar
  3. Böhm J, Niell A, Tregoning P, Schuh H (2006b) Global mapping function (GMF): a new empirical mapping function based on data from numerical weather model data. Geophys Res Lett 33:L07304. doi: 10.1029/2005GL025546 CrossRefGoogle Scholar
  4. Böhm J, Heinkelmann R, Mendes Cerveira PJ, Pany A, Schuh H (2009) Atmospheric loading corrections at the observation level in VLBI analysis. J Geodesy 83(11):1107–1113. doi: 10.1007/s00190-009-0329-y CrossRefGoogle Scholar
  5. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2011) The new Vienna VLBI software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) Proceedings of the 2009 IAG symposium, Buenos Aires, International Association of Geodesy Symposia 136. ISBN 978-3-642-20337-4Google Scholar
  6. McCarthy DD, Petit G (2004) IERS conventions 2003. IERS technical note, no. 32, Verlag des BKG, Frankfurt am MainGoogle Scholar
  7. Nothnagel A (2008) Short note: conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geodesy 83(8):787–792. doi: 10.1007/s00190-008-0284-z CrossRefGoogle Scholar
  8. Petit G, Luzum B (eds) (2010) IERS conventions 2010. IERS technical note, no. 36, Verlag des BKG, Frankfurt am Main (in print)Google Scholar
  9. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109:B03405CrossRefGoogle Scholar
  10. Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geodesy 81(6–8):379–387. doi: 10.1007/s00190-006-0131-z CrossRefGoogle Scholar
  11. Steigenberger P, Böhm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geodesy 83(10):943–951. doi: 10.1007/s00190-009-0311-8 CrossRefGoogle Scholar
  12. Titov O, Tesmer V, Böhm J (2004) OCCAM v.6.0 software for VLBI data analysis. In: Vandenberg NR, Baver K (eds) International VLBI service for geodesy and astrometry 2004 general meeting proceedings, NASA/CP-2004-212255, pp 267–271Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. Plank
    • 1
    Email author
  • H. Spicakova
    • 1
  • J. Böhm
    • 1
  • T. Nilsson
    • 1
  • A. Pany
    • 1
  • H. Schuh
    • 1
  1. 1.Institute of Geodesy and GeophysicsVienna University of TechnologyViennaAustria

Personalised recommendations