Systematic Inconsistencies Between VLBI CRF and TRF Solutions Caused by Different Analysis Options

  • R. HeinkelmannEmail author
  • V. Tesmer
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 138)


We assess the systematics between Very Long Baseline Interferometry (VLBI) terrestrial and celestial reference frames (TRF and CRF) solutions caused by different analysis options. Comparisons are achieved by sequential variation of options relative to a reference solution, which fulfills the requirements of the International VLBI Service for Geodesy and Astrometry (IVS) analysis coordination. Neglecting the total NASA/GSFC Data Assimilation Office (DAO) a priori gradients causes the largest effects: Mean source declinations differ up to 0.2mas, station positions are shifted southwards, and heights are systematically larger by up to 3mm, if no a priori gradients are applied. The effect is explained with the application of gradient constraints. Antenna thermal deformations, atmospheric pressure loading, and the atmosphere pressure used for hydrostatic delay modeling still exhibit significant effects on the TRF, but corresponding CRF differences (about 10μas) are insignificant. The application of NMF atmosphere mapping functions can systematically affect source declinations up to 30μas, which is between the estimated axes stability (10μas) and the mean positional accuracy (40μas) specified for the ICRF2. Further significant systematic effects are seasonal variations of the terrestrial network scale (±1mm) neglecting antenna thermal deformations, and seasonal variations of station positions, primarily of the vertical component up to 5mm, neglecting atmospheric loading. The application of NMF instead of VMF1 can result in differences of station heights up to 6mm, but no overall global systematic can be found. Using constant atmosphere pressure values for the determination of hydrostatic zenith delays systematically deforms the TRF: station height differences mostly show the same sign with absolute values exceeding 1mm.


Very long baseline interferometry (VLBI) Terrestrial reference frame (TRF) Celestial reference frame (CRF) Interactions of the reference frames 



We thank Dan MacMillan and the other reviewers and acknowledge IVS for providing excellent VLBI data.


  1. Abbondanza C, Sarti P (2010) Effects of illumination functions on the computation of gravity-dependent signal path variation models in primary focus and Cassegrainian VLBI telescopes. J Geodesy 84:515–525CrossRefGoogle Scholar
  2. Berg H (1948) Allgemeine meteorologie. Dümmler, BonnGoogle Scholar
  3. Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. In: Drewes H (ed) Proceedings of the IAG symposia 134. Springer, Heidelberg, pp 265270Google Scholar
  4. Böhm J, Schuh H (2007) Troposphere gradients from the ECMWF in VLBI analysis. J Geodesy 81:403–408CrossRefGoogle Scholar
  5. Böhm J, Niell AE, Tregoning P, Schuh H (2006a) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304CrossRefGoogle Scholar
  6. Böhm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406CrossRefGoogle Scholar
  7. Böhm J, Heinkelmann R, Schuh H (2007a) Global pressure and temperature (GPT): a spherical harmonic expansion of annual pressure and temperature variations for geodetic applications. J Geodesy 81:679–683CrossRefGoogle Scholar
  8. Böhm J, Mendes-Cerveira PJ, Schuh H, Tregoning P (2007b) The impact of mapping functions for the neutral atmosphere based on numerical weather models in GPS data analysis. In: Rizos C, Tregoning P (eds) Proceedings of the IAG symposia 130. Springer, Berlin, pp 837–843Google Scholar
  9. Böhm J, Heinkelmann R, Mendes-Cerveira PJ, Pany A, Schuh H (2009) Atmospheric loading corrections at the observation level in VLBI analysis. J Geodesy 83:1107–1113CrossRefGoogle Scholar
  10. Böhm J, Urquhart L, Steigenberger P, Heinkelmann R, Nafisi V, Schuh (this issue) A priori gradients in the analysis of space geodetic observations. In: Proceedings of the IAG symposia “Reference frames for applications in geosciences”. Springer, HeidelbergGoogle Scholar
  11. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Rad Sci 20(6):1593–1607CrossRefGoogle Scholar
  12. Heinkelmann R (2009) IVStrop: status and recommendations of the IVS rapid troposphere combination. In: Bourda G, Charlot P, Collioud A (eds) Proceedings of the 19th EVGA working meeting, pp 180–182Google Scholar
  13. Heinkelmann R, Böhm J, Schuh H (2005) Homogenization of surface pressure recordings and its impact on long-term series of VLBI tropospheric parameters. In: Vennebusch M, Nothnagel A (eds) Proceedings of the 17th EVGA working meeting, pp 74–78,
  14. Heinkelmann R, Böhm J, Schuh H, Tesmer V (2009) The effect of meteorological input data on the VLBI reference frames. In: Drewes H (ed) Proceedings of the IAG symposia 134, Springer, Berlin, pp 245–251Google Scholar
  15. Heinkelmann R, Böhm J, Schuh J, Tesmer V (2006) Global VLBI solution IGG05R01. In: Behrend D, Baver K (eds) Proceedings of the 4th IVS general meeting. NASA/CP-2006-214140, pp 42–46,
  16. Heinkelmann R, Böhm J, Schuh H, Bolotin S, Engelhardt G, MacMillan DS, Negusini M, Skurikhina E, Tesmer V, Titov O (2007) Combination of long time-series of troposphere zenith delays observed by VLBI. J Geodesy 81:483–502CrossRefGoogle Scholar
  17. IERS (2004) IERS conventions (2003). In: McCarthy DD, Petit G (eds) IERS technical no. 32, BKG, FrankfurtGoogle Scholar
  18. IERS (2009) The second realization of the international celestial reference frame by very long baseline interferometry (2009). In: Fey A, Gordon D, Jacobs CS (eds) IERS technical no. 35. BKG, FrankfurtGoogle Scholar
  19. IERS (2010) IERS conventions (2010). In: Petit G Luzum B (eds) IERS technical no. 36. BKG, FrankfurtGoogle Scholar
  20. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  21. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dynam 56:394–415CrossRefGoogle Scholar
  22. MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22:1041–1044CrossRefGoogle Scholar
  23. MacMillan DS, Gipson JM (1994) Atmospheric pressure loading parameters from very long baseline interferometry observations. J Geophys Res 99:18081–18087CrossRefGoogle Scholar
  24. MacMillan DS, Ma C (1998) Using meteorological data assimilation models in computing tropospheric delays at microwave frequencies. Phys Chem Earth 23:97–102CrossRefGoogle Scholar
  25. Mathews PM, Herring TA, Buffett BA (2002) Modeling of nutation and precision: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107(B4). doi: 10.1029/2001JB000390
  26. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelength. J Geophys Res 101:3227–3246CrossRefGoogle Scholar
  27. Nothnagel A (2008) Conventions on thermal expansion modeling of radio telescopes for geodetic and astrometric VLBI. J Geodesy 83:787–792CrossRefGoogle Scholar
  28. Petrov L, Boy J-P (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109:B03405. doi: 10.1029/2003JB002500 CrossRefGoogle Scholar
  29. Rabbel W, Schuh H (1986) The influence of atmospheric loading on VLBI-experiments. J Geophys 59:164–170Google Scholar
  30. Sarti P, Abbondanza C, Vittuari L (2009) Gravity-dependent signal path variation in a large VLBI telescope modeled with a combination of surveying methods. J Geodesy 83:1115–1126CrossRefGoogle Scholar
  31. Sarti P, Abbondanza C, Petrov L, Negusini M (2010) Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis. J Geodesy. doi: 10.1007/s00190-010-0410-6
  32. Schuh H, Heinkelmann R, Sokolova R, Tesmer R (2007) Interaction of celestial and terrestrial reference frames. IAG sub-commission 1.4 final report, May 2007, pp 46–51Google Scholar
  33. Tesmer V (2002) VLBI solution DGFI01R01 based on least-squares estimation using OCCAM 5.0 and DOGS-CS. In: Vandenberg N, Baver K (eds) Proceedings of the 2nd IVS general meeting. NASA/CP-2002-210002, pp 295–299Google Scholar
  34. Tesmer V (2007) Effect of various analysis options on VLBI-determined CRF. In: Böhm J, Pany A, Schuh H (eds) Proceedings of the 18th EVGA working meeting, pp. 103–110,
  35. Tesmer V, Böhm J, Heinkelmann R, Schuh H (2006) Impact of analysis options on the TRF, CRF and position time series estimated from VLBI. In: Behrend D, Baver K (eds) Proceedings of the 4th IVS general meeting. NASA/CP-2006-214140, pp 243–251Google Scholar
  36. Tesmer V, Böhm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF, and position time-series estimated from VLBI. J Geodesy 81:409–422CrossRefGoogle Scholar
  37. Uppala SM, Kallberg PW, Simmons AJ (2005) The ERA-40 Reanalysis. Q J Roy Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  38. vanDam T, Herring TA (1994) Detection of atmospheric pressure loading using very long baseline interferometry measurements. J Geophys Res 99(B3):4505–4517CrossRefGoogle Scholar
  39. Wresnik J, Haas R, Böhm J, Schuh H (2007) Modeling thermal deformation of VLBI antennas with a new temperature model. J Geodesy 81:423–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany
  2. 2.OHB-System AGBremenGermany

Personalised recommendations