Skip to main content

Mechanism of Cyclic β-Glucan Production

  • Chapter
  • First Online:
Cyclic β-Glucans from Microorganisms

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

  • 689 Accesses

Abstract

The primary genes involved in β-(1,2) cyclic glucan synthesis and transport in Rhizobiaceae and Agrobacteriaceae are chv A, chv B, ndv A, and ndv B. The genes, ndv B and ndv C are involved in β-(1,3) glucan synthesis. The genes, ndvB, ndvC, and ndvD are involved in the synthesis of β-(1,3)-(1,6) cyclic. The genes opgG, H, B, C, D, I, opg HXcv, cgs, and cgm are also responsible for the synthesis of periplasmic glucans in Proteobacteria. In the early stages of polysaccharide synthesis pentose-phosphate and Entner–Doudoroff pathways are involved. The enzymes, cyclic glucan synthase and β-(1,3), β-(1,6)-(1,3), and β-(1,3)-(1,6) glucosyltransferase catalyse the biosynthesis process in the respective glucan synthesis. The β-glucanases are involved in the degradation of glucans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altabe S, Inon de Iannino N, De Mendoza D, Ugalde R (1990) Expression of the Agrobacterium tumefaciens chvB virulence region in Azospirillum spp. J Bacteriol 172(5):2563–2567

    Google Scholar 

  • Altabe SG, de Iannino NI, De Mendoza D, Ugalde RA (1994) New osmoregulated beta (1–3), beta (1–6) glucosyltransferase (s) in Azospirillum brasilense. J Bacteriol 176(16):4890–4898

    PubMed  CAS  Google Scholar 

  • Amemura A, Hisamatsu M, Mitani H, Harada T (1983) Cyclic (1,2)-β-glucan and the octasaccharide repeating-units of extracellular acidic polysaccharides produced by Rhizobium. Carbohydr Res 114(2):277–285

    Article  CAS  Google Scholar 

  • Arellano RB, Lapaque N, Salcedo S, Briones G, Ciocchini AF, Ugalde RA, Moreno E, Moriyon I, Gorvel JP (2005) Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immun 6:618–625

    Article  Google Scholar 

  • Barras D, Moore A, Stone B (1969) Enzyme-substrate relationships among β-glucan hydrolases. Adv Chem Ser 95:105–138

    Article  CAS  Google Scholar 

  • Batley M, Redmond J, Djordjevic S, Rolfe B (1987) Characterisation of glycerophosphorylated cyclic-β-1, 2-glucans from a fast-growing Rhizobium species. Biochim Biophys Acta (BBA)-Biomembranes 901(1):119–126

    Google Scholar 

  • Beale JM Jr, Foster JL (1996) Carbohydrate fluxes into alginate biosynthesis in Azotobacter vinelandii NCIB 8789: NMR investigations of the triose pools. Biochemistry 35(14):4492–4501

    Article  PubMed  Google Scholar 

  • Bhagwat A, Keister DL (1995) Sitedirected mutagenesis of the beta-(1–3), beta-(1–6)-D-glucan synthesis locus of Bradyrhizobium japonicum. Mol Plant Microbe Interact 8:366–370

    Article  CAS  Google Scholar 

  • Bhagwat AA, Gross KC, Tully RE, Keister DL (1996) β-Glucan synthesis in Bradyrhizobium japonicum:Characterization of a New locus (ndvC) Influencing β-(1-6) Linkages. J Bacteriol 178:4635–4642

    Google Scholar 

  • Bhagwat A, Mithofer A, Pfeffer PE, Kraus C, Spickers N, Hotchkiss A, Ebel J, Keister DL (1999) Further studies of the role of cyclic-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1,3)-β-glucosyl. Plant physiol 119(3):1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Bhagwat A, Tully R, Keister DL (1993) Identification and cloning of a cyclic beta-(1,3), beta-(1,6)-D-glucan synthesis locus from Bradyrhizobium japonicum. FEMS Microbiol Lett 114:139–144

    PubMed  CAS  Google Scholar 

  • Bhagwat AA, Keister DL (1992) Synthesis of β-glucans by Bradyrhizobium japonicum and Rhizobium fredii. Can J Microbiol 38:510–514

    Article  CAS  Google Scholar 

  • Bohin JP (2000) Osmoregulated periplasmic glucans in Proteobacteria1. FEMS Microbiol Lett 186(1):11–19

    PubMed  CAS  Google Scholar 

  • Bohin JP, Lacroix JM (2007) Osmoregulation in the periplasm. The periplasm ASM Press, Washington, pp 325–341

    Google Scholar 

  • Breedveld MW, Benesi AJ, Marco ML, Miller KJ (1995) Effect of phosphate limitation on synthesis of periplasmic cyclic (beta)-(1, 2)-glucans. Appl Environ Microbiol 61(3):1045–1053

    PubMed  CAS  Google Scholar 

  • Breedveld MW, Miller KJ (1994) Cyclic β-glucans of members of the family Rhizobiaceae. Microbiol Rev 58:145–161

    PubMed  CAS  Google Scholar 

  • Breedveld MW, Zevenhuizen LPTM, Canter CHCJ, Zehnder AJB (1993) Influence of growth conditions on production of capsular and extracellular polysaccharides by Rhizobium leguminosarum. Antonie van Leeuwenhoek 64:1–8

    Article  PubMed  CAS  Google Scholar 

  • Breedveld MW, Zevenhuizen LPTM, Zehnder AJBJ (1991) Osmotically-induced oligo and polysaccharide synthesis by Rhizobium meliloti SU-47. Gen Microbiol 136:2511–2519

    Article  Google Scholar 

  • Briones G, Inon de Iannino N, Roset M, Vigliocco A, Paulo PS, Ugalde RA (2001) Brucella abortus cyclic β-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect Immun 69:4528–4535

    Google Scholar 

  • Brown DG, Allen C (2004) Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol Microbiol 53(6):1641–1660

    Article  PubMed  CAS  Google Scholar 

  • Cangelosi GA, Martinetti G, Leigh JA, Chang Lee C, Theines C, Nester EW (1989) Role for Agrobacterium tumefaciens ChvA protein in export of β-1,2-glucan. J Bacteriol 171:1609–1615

    Google Scholar 

  • Castro OA, Zorreguieta A, Ielmini V, Vega G, Ielpi L (1996) Cyclic beta-(1,2)-glucan synthesis in Rhizobiaceae: roles of the 319-kilodalton protein intermediate. J Bacteriol 178(20):6043–6048

    PubMed  CAS  Google Scholar 

  • Celli J (2006) Surviving inside a macrophage: the many ways of Brucella. Res Microbiol 157:93–98

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Bhagwat AA, Yaklich R, Keister DL (2002) Characterization of ndvD, the third gene involved in the synthesis of cyclic β-(1,3), (1,6)-D-glucans in Bradyrhizobium japonicum. Can J Microbiol 48(11):1008–1016

    Article  PubMed  CAS  Google Scholar 

  • Cho E, Jeon Y, Jung S (2009) Novel succinylated and large-sized osmoregulated periplasmic glucans of Pseudomonas syringae pv. syringae. Carbohydr Res 344(8):996–1000

    Article  PubMed  CAS  Google Scholar 

  • Cho E, Lee S, Jung S (2008) Novel acetylated [alpha]-cyclosophorotridecaose produced by Ralstonia solanacearum. Carbohydr res 343(5):912–918

    Article  PubMed  CAS  Google Scholar 

  • Choma A, Komaniecka I (2003) Characterisation of Mesorhizobium huakuii cyclic β-glucan. Acta Biochim Polon 50:1273–1281

    PubMed  CAS  Google Scholar 

  • Ciocchini AE, Guidolin LS, Casabuono AC, Couto AS, Inon de Iannino N, Ugalde RA (2007) A glycosyltransferase with a length-controlling activity as a mechanism to regulate the size of polysaccharides. Proc Natl Acad Sci 104(42):16492–16497

    Google Scholar 

  • Ciocchini AE, Roset MS, Briones G, De Iannino NI, Ugalde RA (2006) Identification of active site residues of the inverting glycosyltransferase Cgs required for the synthesis of cyclic β-1, 2-glucan, a Brucella abortus virulence factor. Glycobiology 16(7):679–691

    Article  PubMed  CAS  Google Scholar 

  • Ciocchini AE, Roset MS, Inon de Iannino N, Ugalde RA (2004) Membrane topology analysis of cyclic glucan synthase, a virulence determinant of Brucella abortus. J Bacteriol 186(21):7205–7213

    Google Scholar 

  • Cogez V, Gak E, Puskas A, Kaplan S, Bohin JP (2002) The opgGIH and opgC genes of Rhodobacter sphaeroides form an operon that controls backbone synthesis and succinylation of osmoregulated periplasmic glucans. Eur J Biochem 269(10):2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Cohen JL, Miller KJJ (1991) A novel membrane-bound glucosyltransferase from Bradyrhizobium japonicum. J Bacteriol 173:4271–4276

    PubMed  CAS  Google Scholar 

  • Douglas CJ, Staneloni RJ, Rubin R, Nester E (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bacteriol 161(3):850–860

    PubMed  CAS  Google Scholar 

  • Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester E, Helinski DR, Ditta G (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci 83(12):4403–4407

    Article  PubMed  CAS  Google Scholar 

  • Geremia RA, Cavaignac AS, Zorreguieta N, Toro J, Olivares R, Ugalde A (1987) A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form β-(1,2)-glucan. J Bacteriol 169:880–884

    PubMed  CAS  Google Scholar 

  • Gonzalez JE, York GM, Walker GC (1996) Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179(1):141–146

    Article  PubMed  CAS  Google Scholar 

  • Guidolin LS, Ciocchini AE, de Iannino NI, Ugalde RA (2009) Functional mapping of Brucella abortus cyclic β-1, 2-glucan synthase: identification of the protein domain required for cyclization. J Bacteriol 191(4):1230–1238

    Article  PubMed  CAS  Google Scholar 

  • Hisamatsu M, Yamada T, Higashiura T, Ikeda M (1987) The production of acidic, O-acetylated cyclosophorans (cyclic β-(1,2)-D-glucans) by Agrobacterium and Rhizobium species. Carbohydr Res 163:115–122

    Article  CAS  Google Scholar 

  • Inon de Iannino N, Briones G, Tolmasky M, Ugalde RA (1998) Molecular cloning and characterization of cgs, the Brucella abortus cyclic β (1–2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J Bacteriol 180:4392–4400

    PubMed  CAS  Google Scholar 

  • Inon de Iannino N, Ugalde RA (1993) Biosynthesis of cyclic β-(1–3)-(1–6) glucan in Bradyrhizobium spp. Arch Microbiol 159(1):30–38

    Article  CAS  Google Scholar 

  • Ishihara S, Hirata A, Nogami S, Beauvais A, Latge JP, Ohya Y (2007) Homologous subunits of 1,3-beta-glucan synthase are important for spore wall assembly in Saccharomyces cerevisiae. Eukaryot cell 6(2):143–156

    Article  PubMed  CAS  Google Scholar 

  • Jackson B, Bohin J, Kennedy E (1984) Biosynthesis of membrane-derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity. J Bacteriol 160(3):976–981

    PubMed  CAS  Google Scholar 

  • Jung Y, Park H, Cho E, Jung S (2005) Structural analyses of novel glycerophosphorylated [alpha]-cyclosophorohexadecaoses isolated from X. campestris pv. campestris. Carbohydr res 340(4):673–677

    Article  PubMed  CAS  Google Scholar 

  • Kai A, Arashida T, Hatanaka K, Akaike T, Matsuzaki K, Mimura T, Kaneko Y (1994) Analysis of the biosynthetic process of cellulose and curdlan using 13C-labeled glucoses. Carbohydr polym 23(4):235–239

    Article  CAS  Google Scholar 

  • Kawaharada Y, Kiyota H, Eda Minamisawa S, Mitsui H (2008) Structural characterization of natural and anionic glucans from Mesorhizobium loti. Carbohydr res 343:2422–2427

    Google Scholar 

  • Kennedy EP (ed) (1987) Membrane-derived oligosaccharides, Cellular and molecular biology, vol 1. American Society for Microbiology, Washington, pp 672–679

    Google Scholar 

  • Kennedy EP (ed) (1996) American Society for Microbiology, Washington

    Google Scholar 

  • Koizumi K, Okada Y, Horiyama S, Utamura T, Hisamatsu M, Amemura A (1983) Separation of cyclic (1,2)-β-D-glucans (cyclosophoraoses) produced by Agrobacterium and Rhizobium, and determination of their degree of polymerization by high performance liquid chromatography. J Chromatogr 265:89–96

    Article  CAS  Google Scholar 

  • Komaniecka I, Choma A (2003) Isolation and characterization of periplasmic cyclic beta-glucans of Azorhizobium caulinodans. FEMS Microbiol Lett 227(2):263–269

    Article  PubMed  CAS  Google Scholar 

  • Lacroix JM, Lanfroy E, Cogez V, Lequette Y, Bohin A, Bohin JP (1999) The mdoC gene of Escherichia coli encodes a membrane protein that is required for succinylation of osmoregulated periplasmic glucans. J Bacteriol 181(12):3626–3631

    PubMed  CAS  Google Scholar 

  • Lacroix JM, Loubens I, Tempete M, Menichi B, Bohin JP (1991) The mdoA locus of Escherichia coli consists of an operon under osmotic control. Mol Microbiol 5(7):1745–1753

    Article  PubMed  CAS  Google Scholar 

  • Lanfroy E, Bohin J (1993) Physical map location of the Escherichia coli gene encoding phosphoglycerol transferase I. J Bacteriol 175(17):5736

    PubMed  CAS  Google Scholar 

  • Lawson SG, Mason TL, Sabin RD, Sloan ME, Drake RR, Haley BE, Wasserman BP (1989) UDP-glucose:(1,3)-β-glucan synthase from Daucus carota L.: characterization, photoaffinity labeling, and solubilization. Plant physiol 90(1):101

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Cho E, Jung S (2009) Periplasmic glucans isolated from Proteobacteria. BMB Rep 42(12):769–775

    Article  PubMed  CAS  Google Scholar 

  • Lepek V, Navarro YN, Ugalde RA (1990) Synthesis of (1,2) glucan in Rhizobium loti. Arch Microbiol 155(1):35–41

    Article  CAS  Google Scholar 

  • Lequette Y, Odberg-Ferragut C, Bohin JP, Lacroix JM (2004) Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures. J Bacteriol 186(12):3695–3702

    Article  PubMed  CAS  Google Scholar 

  • Lequette Y, Rollet E, Delangle A, Greenberg EP, Bohin JP (2007) Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa. Microbiology 153(10):3255

    Article  PubMed  CAS  Google Scholar 

  • Lippens G, Wieruszeski JM, Horvath D, Talaga P, Bohin JP (1998) Slow dynamics of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum as revealed by heteronuclear relaxation studies. J Am Chem Soc 120(1):170–177

    Article  CAS  Google Scholar 

  • Lippens G, Wieruszeski JM, Talaga P, Bohin JP (1996) Measurement of 3-bond coupling-constants in the osmoregulated periplasmic glucan of Burkholderia-Solanacearum. J Biomol NMR 8:311–318

    Article  PubMed  CAS  Google Scholar 

  • Loubens I, Debarbieux L, Bohin A, Lacroix JM, Bohin JP (1993) Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling the pathogenicity of Pseudomonas syringae. Mol Microbiol 10:329–340

    Google Scholar 

  • Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96(1):47–56

    Article  PubMed  CAS  Google Scholar 

  • Miller K, Gore R, Benesi A (1988) Phosphoglycerol substituents present on the cyclic beta-1, 2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol 170(10):4569–4575

    PubMed  CAS  Google Scholar 

  • Miller KJ, Gore RS, Johnson R, Benesi AJ, Reinhold VN (1990) Cell-associated oligosaccharides of Bradyrhizobium spp. J Bacteriol 172(1):136–142

    PubMed  CAS  Google Scholar 

  • Minsavage G, Mudgett M, Stall R, Jones J (2004) Importance of opgHXcv of Xanthomonas campestris pv. vesicatoria in host-parasite interactions. Mol Plant Microbe Interact 17(2):152–161

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Oikawa N, Yamada H, Yadomae T (1978) Structural examination of antitumour, water-soluble glucans from Grifora umbellata by use of four types of glucanase. Carbohydr Res 65(2):235–243

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay P, Williams J, Mills D (1988) Molecular analysis of a pathogenicity locus in Pseudomonas syringae pv. syringae. J Bacteriol 170(12):5479–5488

    PubMed  CAS  Google Scholar 

  • Nomenclature E (1992) Recommendations of the nomenclature committee of the international union of biochemistry and molecular biology on the nomenclature and classification of enzymes, NC-IUBMB. NC-IUBMB (Academic), New York

    Google Scholar 

  • Page F, Altabe S, Hugouvieux-Cotte-Pattat N, Lacroix JM, Robert-Baudouy, Bohin JP (2001) Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol 183(10):3134–3141

    Google Scholar 

  • Pfeffer PE, Osman SF, Hotchkiss A, Bhagwat AA, Keister DL, Valentine KM (1996) Cyclolaminarinose. A new biologically active [beta]-(1,3) cyclic glucan. Carbohydr Res 296(1–4):23–37

    Article  PubMed  CAS  Google Scholar 

  • Portais JC, Tavernier P, Gosselin I, Barbotin JN (1999) Cyclic organization of the carbohydrate metabolism in Sinorhizobium meliloti. Eur J Biochem 265(1):473–480

    Article  PubMed  CAS  Google Scholar 

  • Puvanesarajah V, Schell FM, Stacey G, Douglas CJ, Nester EW (1985) Role for 2-linked, β-D-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol 164:102–106

    PubMed  CAS  Google Scholar 

  • Reese ET, Parrish FW, Mandels M (1962) Beta-d-1,6-Glucanases in fungi. Can J Microbiol 8:327

    Article  PubMed  CAS  Google Scholar 

  • Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC, Reinhold VN (1994) Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021. J Bacteriol 176(7):1997–2002

    PubMed  CAS  Google Scholar 

  • Rigano LA, Payette C, Brouillard G, Marano MR, Abramowicz L, Torres PS, Yun M, Castagnaro AP, Oirdi ME, Dufour V (2007) Bacterial Cyclic ß-(1, 2)-glucan acts in systemic suppression of plant immune responses. Plant Cell 19(6):2077–2089

    Article  PubMed  CAS  Google Scholar 

  • Rolin DB, Pfeffer PE, Osman SF, Szwergold BS, Kappler F, Benesi AJ (1992) Structural studies of a phosphocholine substituted [beta]-(1, 3);(1, 6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta (BBA)-General Subjects 1116 (3):215–225

    Google Scholar 

  • Roset MS, Ciocchini AE, Ugalde RA, Iannino Inon de N (2006) The Brucella abortus Cyclic β-1,2-Glucan virulence factor is substituted with O-ester-linked succinyl residues. J Bacteriol 188:5003–5013

    Google Scholar 

  • Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus J, Cattolico L (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415(6871):497–502

    Article  PubMed  CAS  Google Scholar 

  • Santos T, Nombela C, Villanueva J, Larriba G (1979) Characterization and synthesis regulation of Penicillium italicum 1, 6-β-glucanase. Arch Microbiol 121(3):265–270

    Article  PubMed  CAS  Google Scholar 

  • Schep G, Shepherd M, Sullivan P (1984) Purification and properties of a beta-1, 6-glucanase from Penicillium brefeldianum. Biochem J 223(3):707

    PubMed  CAS  Google Scholar 

  • Seo D, Lee S, Park H, Yi DH, Ji E, Shin DH (2011) Jung S (2002) Structural analyses of total anionic cyclosophoraoses synthesized by Rhizobium meliloti. Bull Korean Chem Soc 23(6):899–902

    Google Scholar 

  • Shibata Y (1974) Enzymatic hydrolysis of glucans containing β-1,3-and β-1,6-linkages. J Biochem 75(1):85–92

    PubMed  CAS  Google Scholar 

  • Shibata Y, Fukimbara T (1972) Enzymic hydrolysis of glucans containing β-1, 3-and β-1, 6-linkages. β-1.6-glucan hydrolase of fungi. J Ferment Technol 50:388–396

    CAS  Google Scholar 

  • Stanfield SW, Ielpi L, O’brochta D, Helinski DR, Ditta GS (1988) The ndvA gene product of Rhizobium meliloti is required for beta-(1,2) glucan production and has homology to the ATP-binding export protein HlyB. J Bacteriol 170(8):3523–3530

    PubMed  CAS  Google Scholar 

  • Steinbuchel A, Rhee SK (ed) (2005) Polysaccharides and polyamides in the food industry: properties, production, and patents, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  • Stowers MD (1985) Carbon metabolism in Rhizobium species. Annu Rev Microbiol 39(1):89–108

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (1985) Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol 39(1):243–270

    Article  PubMed  CAS  Google Scholar 

  • Talaga P, Cogez V, Wieruszeski JM, Stahl B, Lemoine J, Lippens G, Bohin JP (2002) Osmoregulated periplasmic glucans of the free living photosynthetic bacterium Rhodobacter sphaeroides. Eur J Biochem 269 (10):2464–2472

    Google Scholar 

  • Talaga P, Stahl B, Wieruszeski JM, Hillenkamp F, Tsuyumu S, Lippens G, Bohin JP (1996) Cell-associated glucans of Burkholderia solanacearum and Xanthomonas campestris pv. citri: a new family of periplasmic glucans. J Bacteriol 178(8):2263–2271

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Kobayashi R, Nagasaki S (1974) Purification and Properties of an Endo β-1, 6-Glucanase from Rhizopus chinensis R-69. Agric Biol Chem 38(8):1493–1500

    Article  CAS  Google Scholar 

  • Zevenhuizen L, Scholten-Koerselman HJ (1979) Surface carbohydrates of Rhizobium.I. Beta-1, 2-glucans. Antonie van Leeuwenhoek 45(2):165–175

    Article  PubMed  CAS  Google Scholar 

  • Zevenhuizen LPTM (1981) Cellular glycogen, β-1,2-glucan, poly-β- hydroxybutyric acid and extracellular polysaccharides in fast growing species of Rhizobium. Antonie van Leeuwenhoek 47:481–497

    Article  PubMed  CAS  Google Scholar 

  • Zorreguieta A, Ugalde RA, Leloir LF (1985) An intermediate in cyclic β-(1,2)-glucan biosynthesis. Biochem Biophys Res Commun 126:352–357

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Doble .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The author(s)

About this chapter

Cite this chapter

Venkatachalam, G., Gummadi, S., Doble, M. (2013). Mechanism of Cyclic β-Glucan Production. In: Cyclic β-Glucans from Microorganisms. SpringerBriefs in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32995-1_7

Download citation

Publish with us

Policies and ethics