Skip to main content

Applications of Cyclic β-Glucans

  • Chapter
  • First Online:
Cyclic β-Glucans from Microorganisms

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

Abstract

Cyclic glucans have larger inner cavity diameter (~0.88 nm) when compared to those found in cyclodextrins (~0.85 nm). This property is valuable in pharmaceutical and food industries. They are used as wound dressing material and for the synthesis of nanowire. Cyclic β-glucans are used as inclusion agents for drugs, including indomethacin, ergosterol, vitamin D3, vitamin E, vitamin KI, propericiazine, reserpine, fluorescein, and flavones. β-(1,3)-(1,6) cyclic glucans have antitumorigenic and immunostimulating activity. They bind to the dectin-1 receptor of macrophages and stimulate immunogenicity. They are used as solubility enhancers for drugs, including zearalenone, paclitaxel, and naproxen. Linear β-(1,3)-glucan is used as one-dimensional host for the synthesis of water-soluble single-walled carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Amemura A, Higashi S (1982) Studies on cyclic β-1,2-glucan obtained from periplasmic space of Rhizobium trifolii cells. Plant Soil 64(3):315–324

    Article  CAS  Google Scholar 

  • Andre I, Mazeau K, Taravel FR, Tvaroska I (1995) Conformation and dynamics of a cyclic (1,2)-β-D-glucan. Int J Biol Macromol 17(3):189–198

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Walker TS, Stermitz FR, Hufbauer RA, Vivanco JM (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128(4):1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Bonoli M, Colabufalo P, Pelillo M, Toschi TG, Lercker G (2003) Fast determination of catechins and xanthines in tea beverages by micellar electrokinetic chromatography. J Agric Food Chem 51(5):1141–1147

    Article  PubMed  CAS  Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition: a new receptor for β-glucans. Nature 413(6851):36–37

    Article  PubMed  CAS  Google Scholar 

  • Calvo M, Lanao J, Dominguez-Gil A (1987) Bioavailability of rectally administered naproxen. Int J Pharm 38(1):117–122

    Article  CAS  Google Scholar 

  • Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25(8):1815–1821

    Article  PubMed  CAS  Google Scholar 

  • Chihara G, Hamuro J, Maeda YY, Arai Y, Fukuoka F (1987) Function and purification of the polysaccharides with marked antitumor activity, especially Lentinan, from Lentinus edodes (Berk). Cancer Res 30:2776–2781

    Google Scholar 

  • Choi Y, Yang C, Kim H, Jung S (2000) Molecular dynamics simulations of cyclohenicosakis-[(1,2)-beta-D-gluco-henicosapyranosyl], a cyclic (1,2)-β-D-glucan (a ‘cyclosophoraose’) of DP 21. Carbohydr Res 326:227–234

    Article  PubMed  CAS  Google Scholar 

  • Connors KA, Mollica JRJA (1966) Theoretical analysis of comparative studies of complex formation: solubility, spectral, and kinetic techniques. J Pharm Sci 55(8):772–780

    Article  PubMed  CAS  Google Scholar 

  • Djaldetti M, Salman H, Bergman M, Djaldetti R, Bessler H (2002) Phagocytosis-the mighty weapon of the silent warriors. Microsc Res Tech 57(6):421–431

    Article  PubMed  Google Scholar 

  • Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312(5775):873–875

    Article  PubMed  CAS  Google Scholar 

  • El-Nezami H, Mykkanen H, Kankaanpaa P, Salminen S, Ahokas J (2000) Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum. J Food Protect 63(4):549–552

    CAS  Google Scholar 

  • El-Nezami H, Polychronaki N, Salminen S, Mykkänen H (2002) Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative á́-Zearalenol. Appl Environ Microbiol 68(7):3545–3549

    Article  PubMed  CAS  Google Scholar 

  • Ernesto RS, Abaigeal CC, Lindsey CK, Melissa KC, Gary RO (2011) Glucan particles for macrophage targeted delivery of nanoparticles. J Drug Deliv 2012

    Google Scholar 

  • Ewart HS, Bloch O, Girouard GS, Kralovec J, Barrow CJ, Ben-Yehudah G, Suarez ER, Rapoport MJ (2007) Stimulation of cytokine production in human peripheral blood mononuclear cells by an aqueous Chlorella extract. Planta Med 73(8):762–768

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Cachau C, Thienpont A, Soulard MH (1996) Synthesis and chromatographic properties of HPLC chiral stationary phases based upon β-Cyclodextrins. Chromatographia 42(9):583–590

    Article  CAS  Google Scholar 

  • Fishbein L, Kaplan M, Gough M (1998) Fructooligosaccharides: a review. Vet Human Toxicol 30:104–107

    Google Scholar 

  • Freimund S, Sauter M, Rys P (2003) Efficient adsorption of the mycotoxins zearalenone and T-2 toxin on a modified yeast glucan. J Environ Sci Health B 38(3):243–255

    Article  PubMed  Google Scholar 

  • Glasoe PK, Long F (1960) Use of glass electrodes to measure acidities in deuterium oxide1, 2. J Phys Chem 64(1):188–190

    Article  CAS  Google Scholar 

  • Gottfert M (1993) Regulation and function of rhizobial nodulation genes. FEMS Microbiol Lett 104(1–2):39–63

    Article  Google Scholar 

  • Gross RA, Scholz C (ed) (2001) Chapter 18. Natural glucans. ACS symposium series 786. Biopolymers from polysaccharides and agroproteins. American Chemical Society, Washington

    Google Scholar 

  • Harnack U, Eckert K, Pecher G (2011) Beta-(1–3), (1–6)-D-glucan enhances the effect of low-dose cyclophosphamide treatment on A20 lymphoma in mice. Anticancer Res 31(4):1169

    PubMed  CAS  Google Scholar 

  • Hunter KW, duPre S, Redelman D (2004) Microparticulate β-glucan upregulates the expression of B7. 1, B7. 2, B7-H1, but not B7-DC on cultured murine peritoneal macrophages. Immunol Lett 93(1):71–78

    Google Scholar 

  • Ikewaki N, Fujii N, Onaka T, Ikewaki S, Inoko H (2007) Immunological actions of Sophy β-glucan (β-1, 3–1, 6 glucan), currently available commercially as a health food supplement. Microbiol Immunol 51(9):861–873

    PubMed  CAS  Google Scholar 

  • Jeon Y, Kwon C, Cho E, Jung S (2010) Carboxymethylated cyclosophoraose as a novel chiral additive for the stereoisomeric separation of some flavonoids by capillary electrophoresis. Carbohydr Res 345(16):2408–2412

    Article  PubMed  CAS  Google Scholar 

  • Jin JH, Cho E, Jung S (2010) Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes. Biotechnol Lett 32(3):413–419

    Article  PubMed  CAS  Google Scholar 

  • Jung V, Lee S, Paik SR, Jung S (2004) Cyclosophoraose as a novel chiral stationary phase for enantioseparation. J Microbiol Biotechnol 14(6):1338–1342

    CAS  Google Scholar 

  • Kim J, Lee SM, Bae IY, Park HG, Gyu Lee H, Lee S (2011) (1,3)(1,6)-β-Glucan-enriched materials from Lentinus edodes mushroom as a high-fibre and low-calorie flour substitute for baked foods. J Sci Food Agric 91:1915–1959

    Article  PubMed  CAS  Google Scholar 

  • Kitae T, Nakayama T, Kano K (1998) Chiral recognition of α-amino acids by charged cyclodextrins through cooperative effects of Coulomb interaction and inclusion. J Chem Soc, Perkin Trans 2(2):207–212

    Google Scholar 

  • Kofuji K, Huang Y, Tsubaki K, Kokido F, Nishikawa K, Isobe T, Murata Y (2010) Preparation and evaluation of a novel wound dressing sheet comprised of β-glucan–chitosan complex. React Funct Polym 70:784–789

    Article  CAS  Google Scholar 

  • Koizumi K, Okada Y, Horiyama S, Utamura T, Higashiura T, Ikeda M (1984a) Preparation of cyclosophoraose-A and its complex-forming ability. J Incl Phenom Macro Chem 2(3):891–899

    Article  CAS  Google Scholar 

  • Koizumi K, Okada Y, Utamura T, Hisamatsu M, Amemura A (1984b) Further studies on the separation of cyclic (1,2)-β-D-glucans (cyclosophoraoses) produced by Rhizobium meliloti IFO 13336, and determination of their degrees of polymerization by high-performance liquid chromatography. J Chromatogr 299:215–224

    Article  CAS  Google Scholar 

  • Kwon C, Choi J, Lee S, Park H, Jung S (2007a) Chiral Separation and Discrimination of Catechin by Microbial Cyclic beta-(1,3), (1,6)-glucans Isolated from Bradyrhizobium japonicum. Bull Korean Chem Soc 28(2):347

    Article  CAS  Google Scholar 

  • Kwon C, Choi Y, Jeong D, Kim JG, Choi JM, Chun S, Park S, Jung S (2012) Inclusion complexation of naproxen with cyclosophoraoses and succinylated cyclosophoraoses in different pH environments. J Incl Phenom Macro Chem 1–9. doi:10.1007/s10847-012-0119-7

  • Kwon C, Choi YH, Kim N, Yoo JS, Yang CH, Kim HW, Jung S (2000) Complex forming ability of a family of isolated cyclosophoraoses with ergosterol and its Monte Carlo docking computational analysis. J Incl Phenom Macro 36(1):55–64

    Article  CAS  Google Scholar 

  • Kwon C, Park H, Jung S (2007b) Enantioseparation of some chiral flavanones using microbial cyclic β-(1,3), (1,6)-glucans as novel chiral additives in capillary electrophoresis. Carbohydr Res 342(5):762–766

    Article  PubMed  CAS  Google Scholar 

  • Larger P, Jones A, Dacombe C (1998) Separation of tea polyphenols using micellar electrokinetic chromatography with diode array detection. J Chromatogr A 799(1):309–320

    Article  CAS  Google Scholar 

  • LaVan DA, Lynn DM, Langer R (2002) Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 1(1):77–83

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jung S (2002) 13C NMR spectroscopic analysis on the chiral discrimination of N-acetylphenylalanine, catechin and propranolol induced by cyclic-(1,2)- β -D-glucans (cyclosophoraoses). Carbohydr Res 337:1785–1789

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jung S (2003) Enantioseparation using cyclosophoraoses as a novel chiral additive in capillary electrophoresis. Carbohydr Res 338(10):1143–1146

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kwon C, Choi Y, Seo DH, Kim HW, S J (2001a) Inclusion complexation of a family of cyclosophoraoses with indomethacin. J Microbiol Biotechnol 11(3):463–468

    CAS  Google Scholar 

  • Lee S, Seo D, Kim H, Jung S (2001b) Investigation of inclusion complexation of paclitaxel by cyclohenicosakis-(1,2)-(β -D-glucopyranosyl), by cyclic- (1,2)- β -D-glucans (cyclosophoraoses), and by cyclomaltoheptaoses (β-cyclodextrins). Carbohydr Res 334:119–126

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Lee D, Park H, Choi Y, Jong S (2003) Solubility enhancement of a hydrophobic flavonoid, luteolin, by the complexation with cyclosophoraoses isolated from Rhizobium meliloti. Antonie Van Leeuwenhoek 84:201–207

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Choi Y, Jeong K, Jung S (2004) Chiral recognition based on enantioselective interactions of propranolol enantiomers with cyclosophoraoses isolated from Rhizobium meliloti. Chirality 16(3):204–210

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kwon C, Park B, Jung S (2009) Synthesis of selenium nanowires morphologically directed by Shinorhizobial oligosaccharides. Carbohydr Res 344(10):1230–1234

    Article  PubMed  CAS  Google Scholar 

  • Leibovich S, Danon D (1980) Promotion of wound repair in mice by application of glucan. J Reticuloendothel Soc 27(1):1

    PubMed  CAS  Google Scholar 

  • Lemke S, Ottinger S, Mayura K, Ake C, Pimpukdee K, Wang N, Phillips T (2001) Development of a multi-tiered approach to the in vitro prescreening of clay-based enterosorbents. Anim Feed Sci Tech 93(1):17–29

    Article  CAS  Google Scholar 

  • Lemke SL, Grant PG, Phillips TD (1998) Adsorption of zearalenone by organophilic montmorillonite clay. J Agric Food 46(9):3789–3796

    Article  CAS  Google Scholar 

  • Li Y, Jiang H, Zhu K, Liu J, Hao Y (2005) Preparation, characterization and nasal delivery of α-cobrotoxin-loaded poly (lactide-co-glycolide)/polyanhydride microspheres. J Control Release 108(1):10–20

    Article  PubMed  CAS  Google Scholar 

  • Lieber CM, Wang ZL (2007) Functional nanowires. MRS Bull 32(02):99–108

    Article  CAS  Google Scholar 

  • Lloyd L, Kennedy J, Methacanon P, Paterson M, Knill C (1998) Carbohydrate polymers as wound management aids. Carbohydr Polym 37(3):315–322

    Article  CAS  Google Scholar 

  • Mahler D, Forrest W Jr, Brown C, Shroff P, Gordon H, Brown B Jr, James K (1976) Assay of aspirin and naproxen analgesia. Clin Pharmacol Ther 19(1):18

    PubMed  CAS  Google Scholar 

  • Masahiro S, Byron PR (2005) Respirable microspheres for inhalation: the potential of manipulating pulmonary disposition for improved therapeutic efficacy. J Pharmacokinet 44(3):263–277

    Article  Google Scholar 

  • Miller KJ, Hadley JA, Gustine DL (1994) Cyclic [beta]-1,6–1,3-glucans of Bradyrhizobium japonicum USDA 110 elicit isoflavonoid production in the soybean (Glycine max) host. Plant Physiol 104(3):917–923

    PubMed  CAS  Google Scholar 

  • Mimura M, Kitamura S, Gotoh S, Takeo K, Urakawa H, Kajiwara K (1996) Conformation of cyclic and linear (1,2)- β -D-glucans in aqueous solution. Carbohydr Res 289:25–37

    Article  PubMed  CAS  Google Scholar 

  • Mycotoxins C (2003) Risks in plant, animal and human systems. Council for Agricultural Science and Technology, Ames

    Google Scholar 

  • Newman R, Klopfenstein C, Newman C, Guritno N, Hofer P (1992) Comparison of the cholesterol-lowering properties of whole barley, oat bran, and wheat red dog in chicks and rats. Cereal Chem (USA)

    Google Scholar 

  • Numata M, Asai M, Kaneko K, Hasegawa T, Fujita N, Kitada Y, Sakurai K, Shinkai S (2004) Curdlan and Schizophyllan (β-1,3-glucans) can entrap single-wall carbon nanotubes in their helical superstructure. Chem Lett 33(3):232–233

    Article  CAS  Google Scholar 

  • Nyfeler F, Moser UK, Walter P (1983) Stereospecific effects of (+)-and (-)-catechin on glycogen metabolism in isolated rat hepatocytes. BBA Mol Cell Res 763(1):50–57

    CAS  Google Scholar 

  • Okada YS, Horiyama K, Koizumi (1985) Studies on inclusion complexes of non-steroidal anti-inflammatory agents with cyclosophoraose-A. Yakugaku Zasshi (Japanese journal) 106:240–247

    Google Scholar 

  • Park H, Jung S (2005) Separation of some chiral flavonoids by microbial cyclosophoraoses and their sulfated derivatives in micellar electrokinetic chromatography. Electrophoresis 26(20):3833–3838

    Article  PubMed  CAS  Google Scholar 

  • Park H, Lee S, Kang S, Jung Y, Jung S (2004) Enantioseparation using sulfated cyclosophoraoses as a novel chiral additive in capillary electrophoresis. Electrophoresis 25(16):2671–2674

    Article  PubMed  CAS  Google Scholar 

  • Patolsky F, Timko BP, Zheng G, Lieber CM (2007) Nanowire-based nanoelectronic devices in the life sciences. MRS Bull 32(02):142–149

    Article  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233(4767):977–980

    Article  PubMed  CAS  Google Scholar 

  • Phillips DA (1992) Flavonoids: plant signals to soil microbes. Rec Adv Phytochem 26:201–223

    CAS  Google Scholar 

  • Purna SK, Babu M (2000) Collagen based dressings–a review. Burns: journal of the International Society for Burn Injuries 26 (1):54

    Google Scholar 

  • Ross GD, Vetvicka V, Yan J, Xia Y, Vetvicková J (1999) Therapeutic intervention with complement and [beta]-glucan in cancer. Immunopharmacology 42(1–3):61–74

    Article  PubMed  CAS  Google Scholar 

  • Rouse JH, Lillehei PT, Sanderson J, Siochi EJ (2004) Polymer/single-walled carbon nanotube films assembled via donor-acceptor interactions and their use as scaffolds for silica deposition. Chem Mater 16(20):3904–3910

    Article  CAS  Google Scholar 

  • Rowinsky EK, Cazenave LA, Donehower RC (1990) Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst 82(15):1247–1259

    Article  PubMed  CAS  Google Scholar 

  • Sevelius H, Runkel R, Segre E, Bloomfield S (1980) Bioavailability of naproxen sodium and its relationship to clinical analgesic effects. Br J Clin Pharmacol 10(3):259

    Article  PubMed  CAS  Google Scholar 

  • Sinha V, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90(3):261–280

    Article  PubMed  CAS  Google Scholar 

  • Song C, Labhasetwar V, Cui X, Underwood T, Levy RJ (1998) Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: results with an acute dog model. J Control Release 54(2):201–211

    Article  PubMed  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  PubMed  CAS  Google Scholar 

  • Sugikawa K, Numata M, Kaneko K, Sada K, Shinkai S (2008) Alternate layer-by-layer adsorption of single-and double-walled carbon nanotubes wrapped by functionalized β-1,3-glucan polysaccharides. Langmuir 24(23):13270–13275

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297(5579):237–240

    Article  PubMed  CAS  Google Scholar 

  • Tans SJ, Dekker C (2000) Potential modulations along carbon nanotubes. Nature 404(6780):834

    Article  PubMed  CAS  Google Scholar 

  • Valero M, Carrillo C, Rodríguez LJ (2003) Ternary naproxen: β-cyclodextrin: polyethylene glycol complex formation. Int J Pharm 265(1):141–149

    Article  PubMed  CAS  Google Scholar 

  • Wistuba D, Trapp O, Gel-Moreto N, Galensa R, Schurig V (2006) Stereoisomeric separation of flavanones and flavanone-7-O-glycosides by capillary electrophoresis and determination of interconversion barriers. Anal Chem 78(10):3424–3433

    Article  PubMed  CAS  Google Scholar 

  • Worth CCT, Wießler M, Schmitz OJ (2000) Analysis of catechins and caffeine in tea extracts by micellar electrokinetic chromatography. Electrophoresis 21(17):3634–3638

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Trincado CA, Murtaugh MP (2004) β -Glucan enhancement of T279 cell IFN-gamma response in swine. Vet Immunol Immunopathol 102:315–320

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Takenaga M, Kitagawa A, Ogawa Y, Mizushima Y, Igarashi R (2002) Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives. J Control Release 81(3):235–249

    Article  PubMed  CAS  Google Scholar 

  • Yiannikouris A, Andre G, Buléon A, Jeminet G, Canet I, Francois J, Bertin G, Jouany JP (2004) Comprehensive conformational study of key interactions involved in zearalenone complexation with β-D-glucans. Biomacromolecules 5(6):2176–2185

    Article  PubMed  CAS  Google Scholar 

  • York WS (1995) A conformational model for cyclic β-(1,2)-linked glucans based on NMR analysis of the β -glucans produced by Xanthomonas campestris. Carbohydr Res 278:205–225

    Article  PubMed  CAS  Google Scholar 

  • York WS, Thomsen JU, Meyer B (1993) The conformations of cyclic (1,2)-[beta]-d-glucans: Application of multidimensional clustering analysis to conformational data sets obtained by Metropolis Monte Carlo calculations. Carbohydr Res 248:55–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Doble .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The author(s)

About this chapter

Cite this chapter

Venkatachalam, G., Gummadi, S., Doble, M. (2013). Applications of Cyclic β-Glucans. In: Cyclic β-Glucans from Microorganisms. SpringerBriefs in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32995-1_2

Download citation

Publish with us

Policies and ethics