Skip to main content

HOLMES: Convergent Meshfree Approximation Schemes of Arbitrary Order and Smoothness

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 89))

Abstract

Local Maximum-Entropy (LME) approximation schemes are meshfree approximation schemes that satisfy consistency conditions of order 1, i.e., they approximate affine functions exactly. In addition, LME approximation schemes converge in the Sobolev space \({W}^{1,p}\), i.e., they are C 0-continuous in the conventional terminology of finite-element interpolation. Here we present a generalization of the Local Max-Ent approximation schemes that are consistent to arbitrary order, i.e., interpolate polynomials of arbitrary degree exactly, and which converge in \({W}^{k,p}\), i.e., they are C k-continuous to arbitrary order k. We refer to these approximation schemes as High Order Local Maximum-Entropy Approximation Schemes (HOLMES). We prove uniform error bounds for the HOLMES approximates and their derivatives up to order k. Moreover, we show that the HOLMES of order k is dense in the Sobolev Space \({W}^{k,p}\), for any \(1 \leq p < \infty \). The good performance of HOLMES relative to other meshfree schemes in selected test cases is also critically appraised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Numer. Method Eng. 65(13), 2167–2202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes. Meshfree Methods for Partial Differential Equations III, ed. by M. Griebel, M.A. Schweitzer, vol. 57 (Springer, New York, 2007), pp. 1–16

    Google Scholar 

  3. I. Babuška, J.M. Melenk, The partition of unity method. Int. J. Numer. Method Eng. 40, 727–758 (1997)

    Article  MATH  Google Scholar 

  4. A. Bompadre, L.E. Perotti, C.J. Cyron, M. Ortiz, Convergent meshfree approximation schemes of arbitrary order and smoothness. Comput. Method Appl. Mech. Eng. 221–222, 80–103 (2012)

    MathSciNet  Google Scholar 

  5. A. Bompadre, B. Schmidt, M. Ortiz, Convergence analysis of meshfree approximation schemes. SIAM J. Numer. Anal. 50, 1344–1366 (2012)

    Article  MATH  Google Scholar 

  6. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (SIAM, Philadelphia, 2002)

    Book  Google Scholar 

  7. J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural vibrations. Comput. Method Appl. Mech. Eng. 195, 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. C.J. Cyron, M. Arroyo, M. Ortiz, Smooth, second order, non-negative meshfree approximants selected by maximum entropy. Int. J. Numer. Method Eng. 79(13), 1605–1632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, J.W.H. Liu, A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. C.A. Duarte, J.T. Oden, Hp clouds – an hp meshless method. Numer. Method Partial Differ. Equ. 12, 673–705 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. González, E. Cueto, M. Doblaré, A higher order method based on local maximum entropy approximation. Int. J. Numer. Method Eng. 83(6), 741–764 (2010)

    MATH  Google Scholar 

  12. A. Huerta, T. Belytschko, S. Fernández-Méndez, T. Rabczuk, Encyclopedia of Computational Mechanics, vol. 1, ch. Meshfree methods (Wiley, Chichester, 2004), pp. 279–309

    Google Scholar 

  13. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Li, F. Habbal, M. Ortiz, Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int. J. Numer. Method. Eng. 83(12), 1541–1579 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. W.K. Liu, S. Li, T. Belytschko, Moving least-square reproducing kernel methods. Part I: methodology and convergence. Comput. Method Appl. Mech. Eng. 143(1–2), 113–154 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Millán, A. Rosolen, M. Arroyo, Thin shell analysis from scattered points with maximum-entropy approximants. Int. J. Numer. Method Eng. 85(6), 723–751 (2011)

    Article  MATH  Google Scholar 

  17. B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10(5), 307–318 (1992)

    Article  MATH  Google Scholar 

  18. V.T. Rajan, Optimality of the Delaunay triangulation in \({\mathbb{R}}^{d}\). Discret. Comput. Geom. 12(2), 189–202 (1994)

    Google Scholar 

  19. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  20. G. Strang, G. Fix, An Analysis of the Finite Element Method, (Prentice-Hall, Englewood Cliffs, 1973)

    MATH  Google Scholar 

  21. N. Sukumar, R. Wright, Overview and construction of meshfree basis functions: from moving least squares to entropy approximants. Int. J. Numer. Method Eng. 70(2), 181–205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd edn. (McGraw-Hill, New York, 1959)

    Google Scholar 

  23. H. Wendland, Scattered Data Approximation (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The support of the Department of Energy National Nuclear Security Administration under Award Number DE-FC52-08NA28613 through Caltech’s ASC/PSAAP Center for the Predictive Modeling and Simulation of High Energy Density Dynamic Response of Materials is gratefully acknowledged. The third author (C.J.C.) gratefully acknowledges the support by the International Graduate School of Science and Engineering of the Technische Universität München.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bompadre, A., Perotti, L.E., Cyron, C.J., Ortiz, M. (2013). HOLMES: Convergent Meshfree Approximation Schemes of Arbitrary Order and Smoothness. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VI. Lecture Notes in Computational Science and Engineering, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32979-1_7

Download citation

Publish with us

Policies and ethics