Skip to main content

Corrected Stabilized Non-conforming Nodal Integration in Meshfree Methods

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 89))

Abstract

A novel approach is presented to correct the error from numerical integration in Galerkin methods for meeting linear exactness. This approach is based on a Ritz projection of the integration error that allows a modified Galerkin discretization of the original weak form to be established in terms of assumed strains. The solution obtained by this method is the correction of the original Galerkin discretization obtained by the inaccurate numerical integration scheme. The proposed method is applied to elastic problems solved by the reproducing kernel particle method (RKPM) with first-order correction of numerical integration. In particular, stabilized non-conforming nodal integration (SNNI) is corrected using modified ansatz functions that fulfill the linear integration constraint and therefore conforming sub-domains are not needed for linear exactness. Illustrative numerical examples are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Babuška, U. Banerjee, J.E. Osborn, Q. Li, Quadrature for meshless methods. Int. J. Numer. Methods Eng. 76, 1434–1470 (2008)

    Article  MATH  Google Scholar 

  2. I. Babuška, U. Banerjee, J.E. Osborn, Q. Zhang, Effect of numerical integration on meshless methods. Comput. Methods Appl. Mech. Eng. 198, 2886–2897 (2009)

    Article  MATH  Google Scholar 

  3. I. Babuška, J. Whiteman, T. Strouboulis, Finite Elements: An Introduction to the Method and Error Estimation (Oxford University Press, Oxford, 2010)

    Google Scholar 

  4. S. Beissel, T. Belytschko, Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bonet, S. Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Methods Eng. 47, 1189–1214 (2000)

    Article  MATH  Google Scholar 

  6. J.S. Chen, M. Hillman, M. RĂ¼ter, A unified domain integration method for Galerkin meshfree methods, submitted to Int. J. Numer. Methods. Eng., (2012)

    Google Scholar 

  7. J.S. Chen, W. Hu, M.A. Puso, Y. Wu, X. Zhang, Strain smoothing for stabilization and regularization of Galerkin meshfree methods, in Meshfree Methods for Partial Differential Equations III, ed. by M. Griebel, M.A. Schweitzer (Springer, Berlin, 2007), pp. 57–75

    Chapter  Google Scholar 

  8. J.S. Chen, C.-T. Wu, S. Yoon, Y. You, A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001)

    Article  MATH  Google Scholar 

  9. J.S. Chen, S. Yoon, C.-T. Wu, Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 53, 2587–2615 (2002)

    Article  MATH  Google Scholar 

  10. J. Dolbow, T. Belytschko, Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech. 23, 219–230 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. P.C. Guan, S.W. Chi, J.S. Chen, T.R. Slawson, M.J. Roth, Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int. J. Impact Eng. 38, 1033–1047 (2011)

    Article  Google Scholar 

  12. J. Nitsche, Ăœber ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36, 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. M.A. Puso, J.S. Chen, E. Zywicz, W. Elmer, Meshfree and finite element nodal integration methods. Int. J. Numer. Methods Eng. 74, 416–446 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Stein, M. RĂ¼ter, Finite element methods for elasticity with error-controlled discretization and model adaptivity, in Encyclopedia of Computational Mechanics, 2nd edn., ed. by E. Stein, R. de Borst, T.J.R. Hughes (Wiley, Chichester, 2007)

    Google Scholar 

Download references

Acknowledgements

The support of this work by the US Army Engineer Research and Development Center under the contract W912HZ-07-C-0019:P00001 to the second and third authors and DFG (German Research Foundation) under the grant no. RU 1213/2-1 to the first author is very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus RĂ¼ter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

RĂ¼ter, M., Hillman, M., Chen, JS. (2013). Corrected Stabilized Non-conforming Nodal Integration in Meshfree Methods. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VI. Lecture Notes in Computational Science and Engineering, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32979-1_5

Download citation

Publish with us

Policies and ethics