Skip to main content

Some Regularized Versions of the Method of Fundamental Solutions

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 89))

  • 2117 Accesses

Abstract

A powerful method of the solution of homogeneous equations is considered. Using the traditional approach of the Method of Fundamental Solutions, the fundamental solution has to be shifted to external source points. This is inconvenient from computational point of view, moreover, the resulting linear system can easily become severely ill-conditioned. To overcome this difficulty, a special regularization technique is applied. In this approach, the original second-order elliptic problem (a modified Helmholtz problem in the paper) is approximated by a fourth-order multi-elliptic boundary interpolation problem. To perform this boundary interpolation, either the Method of Fundamental Solutions, or a direct multi-elliptic interpolation can be used. In the paper, a priori error estimations are deduced. A numerical example is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.J.S. Alves, C.S. Chen, B. Sarler, The Method of Fundamental Solutions for Solving Poisson Problems, ed. by C.A. Brebbia, A. Tadeu, V. Popov. International Series on Advances in Boundary Elements, vol. 13 (WIT, Southampton, 2002), pp. 67–76

    Google Scholar 

  2. I. Babuška, A.K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method, ed. by A.K. Aziz. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Academic, New York, 1972)

    Google Scholar 

  3. W. Chen, L.J. Shen, Z.J. Shen, G.W. Yuan, Boundary knot method for poisson equations. Eng. Anal. Boundary Elem. 29/8, 756–760 (2005)

    Google Scholar 

  4. W. Chen, F.Z. Wang, A method of fundamental solutions without fictitious boundary. Eng. Anal. Boundary Elem. 34, 530–532 (2010)

    Article  MATH  Google Scholar 

  5. C. Gáspár, Multi-level biharmonic and bi-Helmholtz interpolation with application to the boundary element method. Eng. Anal. Boundary Elem. 24/7–8, 559–573 (2000)

    Google Scholar 

  6. C. Gáspár, Fast Multi-level Meshless Methods Based on the Implicit Use of Radial Basis Functions, ed. by M. Griebel, M.A. Schweitzer. Lecture Notes in Computational Science and Engineering, Vol. 26 (Springer, New York, 2002), pp. 143–160.

    Google Scholar 

  7. C. Gáspár, A Multi-Level Regularized Version of the Method of Fundamental Solutions, ed. by C.S. Chen, A. Karageorghis, Y.S. Smyrlis. The Method of Fundamental Solutions—A Meshless Method (Dynamic, Atlanta, 2008), pp. 145–164

    Google Scholar 

  8. C. Gáspár, Multi-level meshless methods based on direct multi-elliptic interpolation. J. Comput. Appl. Math. 226/2, 259–267 (2009). Special issue on large scale scientific computations

    Google Scholar 

  9. T.K. Nilssen, X.-C. Tai, R. Winther, A robust nonconforming H 2-Element. Math. Comput. 70/234, 489–505 (2000)

    Google Scholar 

  10. B. Šarler, Solution of potential flow problems by the modified method of fundamental solutions: formulations with the single layer and the double layer fundamental solutions. Eng. Anal. Boundary Elem. 33, 1374–1382 (2009)

    Article  MATH  Google Scholar 

  11. D.L. Young, K.H. Chen, C.W. Lee, Novel meshless method for solving the potential problems with arbitrary domain. J. Computat. Phys. 209, 290–321 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research was partly supported by the European Union (co-financed by the European Social Fund) under the project TÁMOP 4.2.1/B-09/1/KMR-2010-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Gáspár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gáspár, C. (2013). Some Regularized Versions of the Method of Fundamental Solutions. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VI. Lecture Notes in Computational Science and Engineering, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32979-1_12

Download citation

Publish with us

Policies and ethics