Computing Hopf Bifurcations in Chemical Reaction Networks Using Reaction Coordinates

  • Hassan Errami
  • Werner M. Seiler
  • Markus Eiswirth
  • Andreas Weber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7442)


The analysis of dynamic of chemical reaction networks by computing Hopf bifurcation is a method to understand the qualitative behavior of the network due to its relation to the existence of oscillations. For low dimensional reaction systems without additional constraints Hopf bifurcation can be computed by reducing the question of its occurrence to quantifier elimination problems on real closed fields. However deciding its occurrence in high dimensional system has proven to be difficult in practice. In this paper we present a fully algorithmic technique to compute Hopf bifurcation fixed point for reaction systems with linear conservation laws using reaction coordinates instead of concentration coordinates, a technique that extends the range of networks, which can be analyzed in practice, considerably.


Hopf Bifurcation Invariant Manifold System Biology Markup Language Stoichiometric Matrix Chemical Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. Journal of Symbolic Computation 30(2), 161–179 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)zbMATHGoogle Scholar
  3. 3.
    Sturm, T., Weber, A., Abdel-Rahman, E., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Mathematics in Computer Science 2(3) (2009), Special Issue on Symbolic Computation in BiologyGoogle Scholar
  4. 4.
    Clarke, B.L.: Stability of Complex Reaction Networks. Advances in Chemical Physics, vol. XLIII. Wiley Online Library (1980)Google Scholar
  5. 5.
    Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6), 1361–1382 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Shiu, A.J.: Algebraic methods for biochemical reaction network theory. Phd thesis, University of California, Berkeley (2010)Google Scholar
  7. 7.
    Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems with toric steady states. Bulletin of Mathematical Biology, 1–29 (October 2011)Google Scholar
  8. 8.
    Wagner, C., Urbanczik, R.: The geometry of the flux cone of a metabolic network. Biophysical Journal 89(6), 3837–3845 (2005)CrossRefGoogle Scholar
  9. 9.
    Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation. Oberwolfach Seminars, vol. 29, pp. 43–73. Birkhäuser, Basel (2000), 10.1007/978-3-0348-8438-9_2Google Scholar
  10. 10.
    Sturm, T.F., Weber, A.: Investigating Generic Methods to Solve Hopf Bifurcation Problems in Algebraic Biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sturm, T.: Redlog online resources for applied quantifier elimination. Acta Academiae Aboensis, Ser. B 67(2), 177–191 (2007)Google Scholar
  13. 13.
    Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1&2), 3–27 (1988)Google Scholar
  14. 14.
    Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing 8(2), 85–101 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. Journal of Symbolic Computation 24(2), 209–231 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Brown, C.W.: QEPCAD B: A system for computing with semi-algebraic sets via cylindrical algebraic decomposition. ACM SIGSAM Bulletin 38(1), 23–24 (2004)CrossRefGoogle Scholar
  17. 17.
    Reidl, J., Borowski, P., Sensse, A., Starke, J., Zapotocky, M., Eiswirth, M.: Model of calcium oscillations due to negative feedback in olfactory cilia. Biophysical Journal 90(4), 1147–1155 (2006)CrossRefGoogle Scholar
  18. 18.
    Larhlimi, A.: New Concepts and Tools in Constraint-based Analysis of Metabolic Networks. Dissertation, University Berlin, GermanyGoogle Scholar
  19. 19.
    Dräger, A., Rodriguez, N., Dumousseau, M., Dörr, A., Wrzodek, C., Keller, R., Fröhlich, S., Novère, N.L., Zell, A., Hucka, M.: JSBML: a flexible and entirely Java-based library for working with SBML. Bioinformatics 4 (2011)Google Scholar
  20. 20.
    Hucka, M., Smith, L., Wilkinson, D., Bergmann, F., Hoops, S., Keating, S., Sahle, S., Schaff, J.: The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core. In: Nature Precedings (October 2010)Google Scholar
  21. 21.
    Domijan, A., Kirkilionis, M.: Bistability and oscillations in chemical reaction networks. Journal of Mathematical Biology 59(4), 467–501 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chemical reaction systems. J. Symb. Comp. 33, 275–305 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Seiler, W.: Involution — The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hassan Errami
    • 1
  • Werner M. Seiler
    • 1
  • Markus Eiswirth
    • 2
    • 3
  • Andreas Weber
    • 4
  1. 1.Institut für MathematikUniversität KasselKasselGermany
  2. 2.Fritz-Haber Institut der Max-Planck-GesellschaftBerlinGermany
  3. 3.Ertl Center for Electrochemisty and CatalysisGwangju Institute of Science and Technology (GIST)South Korea
  4. 4.Institut für Informatik IIUniversität BonnBonnGermany

Personalised recommendations