Skip to main content

Symbolic-Numeric Implementation of the Method of Collocations and Least Squares for 3D Navier–Stokes Equations

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7442))

Included in the following conference series:

Abstract

The method of collocations and least squares, which was previously proposed for the numerical solution of the two-dimensional Navier–Stokes equations governing steady incompressible viscous flows, is extended here for the three-dimensional case. The derivation of the collocation and matching conditions is carried out in symbolic form using the CAS Mathematica. The numerical stages are implemented in a Fortran code, into which the left-hand sides of the collocation and matching equations have been imported from the Mathematica program. The results of numerical tests confirm the second order of convergence of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ascher, U., Christiansen, J., Russell, R.D.: A collocation solver for mixed order systems of boundary value problems. Math. Comput. 33, 659–679 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27, 421–433 (1998)

    Article  MATH  Google Scholar 

  3. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier–Stokes equations. J. Comp. Phys. 168, 464–499 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chibisov, D., Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V.: Stability Investigation of a Difference Scheme for Incompressible Navier-Stokes Equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 102–117. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Erturk, E., Gokcol, C.: Fourth order compact formulation of Navier–Stokes equations and driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 50, 421–436 (2006)

    Article  MATH  Google Scholar 

  6. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  7. Ganzha, V.G., Mazurik, S.I., Shapeev, V.P.: Symbolic Manipulations on a Computer and their Application to Generation and Investigation of Difference Schemes. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 335–347. Springer, Heidelberg (1985)

    Google Scholar 

  8. Garanzha, V.A., Kon’shin, V.N.: Numerical algorithms for viscous fluid flows based on high-order accurate conservative compact schemes. Comput. Math. Math. Phys. 39, 1321–1334 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Gerdt, V.P., Blinkov, Y.A.: Involution and Difference Schemes for the Navier–Stokes Equations. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 94–105. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Isaev, V.I., Shapeev, V.P.: Development of the collocations and least squares method. Proc. Inst. Math. Mech. 261(suppl. 1 ), 87–106 (2008)

    MathSciNet  Google Scholar 

  11. Isaev, V.I., Shapeev, V.P.: High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations. Computat. Math. and Math. Phys. 50, 1758–1770 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comp. Phys. 59, 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirkpatrick, M.P., Armfield, S.W., Kent, J.H.: A representation of curved boundaries for the solution of the Navier–Stokes equations on a staggered three-dimensional Cartesian grid. J. Comp. Phys. 184, 1–36 (2003)

    Article  MATH  Google Scholar 

  14. Malan, A.G., Lewis, R.W., Nithiarasu, P.: An improved unsteady, unstructured artificial compressibility, finite volume scheme for viscous incompressible flows: Part I. Theory and implementation. Int. J. Numer. Meth. Engng. 54, 695–714 (2002)

    Article  MATH  Google Scholar 

  15. Marella, S., Krishnan, S., Liu, H., Udaykumar, H.S.: Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. J. Comp. Phys. 210, 1–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Muldoon, F., Acharya, S.: A modification of the artificial compressibility algorithm with improved convergence characteristics, Int. J. Numer. Meth. Fluids 55, 307–345 (2007)

    Article  MATH  Google Scholar 

  17. Pinelli, A., Naqavi, I.Z., Piomelli, U., Favier, J.: Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J. Comp. Phys. 229, 9073–9091 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Roache, P.J.: Computational Fluid Dynamics, Hermosa, Albuquerque, N.M (1976)

    Google Scholar 

  19. Schlichting, H., Truckenbrodt, E.: Aerodynamics of the Airplane. McGraw-Hill, New York (1979)

    Google Scholar 

  20. Semin, L., Shapeev, V.: Constructing the Numerical Method for Navier — Stokes Equations Using Computer Algebra System. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 367–378. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Semin, L.G., Sleptsov, A.G., Shapeev, V.P.: Collocation and least -squares method for Stokes equations. Computational Technologies 1(2), 90–98 (1996) (in Russian)

    MathSciNet  MATH  Google Scholar 

  22. Shapeev, A.V.: Application of computer algebra systems to construct high-order difference schemes. In: 6th IMACS Int. IMACS Conf. on Applications of Computer Algebra, June, 25-28, pp. 92–93. Univ. of St. Petersburg, St. Petersburg (2000)

    Google Scholar 

  23. Shapeev, A.V., Lin, P.: An asymptotic fitting finite element method with exponential mesh refinement for accurate computation of corner eddies in viscous flows. SIAM J. Sci. Comput. 31, 1874–1900 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comp. Phys. 209, 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Valiullin, A.N., Ganzha, V.G., Meleshko, S.V., Murzin, F.A., Shapeev, V.P., Yanenko, N.N.: Application of Symbolic Manipulations on a Computer for Generation and Analysis of Difference Schemes. Preprint Inst. Theor. Appl. Mech. Siberian Branch of the USSR Acad. Sci., Novosibirsk (7) (1981)

    Google Scholar 

  26. Voevodin, V.V.: Computational Foundations of Linear Algebra. Nauka, Moscow (1977) (in Russian)

    Google Scholar 

  27. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Heidelberg (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shapeev, V.P., Vorozhtsov, E.V. (2012). Symbolic-Numeric Implementation of the Method of Collocations and Least Squares for 3D Navier–Stokes Equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32973-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32973-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32972-2

  • Online ISBN: 978-3-642-32973-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics