Advertisement

Stability Conditions of Monomial Bases and Comprehensive Gröbner Systems

  • Katsusuke Nabeshima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7442)

Abstract

A new stability condition of monomial bases is introduced. This stability condition is stronger than Kapur-Sun-Wang’s one. Moreover, a new algorithm for computing comprehensive Gröbner systems, is also introduced by using the new stability condition. A number of segments generated by the new algorithm is smaller than that of segments of in Kapur-Sun-Wang’s algorithm.

Keywords

Stability Condition Check Consistency Symbolic Computation Computer Algebra System Algebraic Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, T.: On Gröbner bases under specialization. Applicable Algebra in Engineering, Communication and Computing 5, 1–8 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-3, A computer algebra system for polynomial computations (2011)Google Scholar
  3. 3.
    Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fortuna, E., Gianni, P., Trager, B.: Degree reduction under specialization. Journal of Pure and Applied Algebra 164(1), 153–163 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gianni, P.: Properties of Gröbner bases under specializations. In: Davenport, J. (ed.) EUROCAL 1987, pp. 293–297. ACM Press (1987)Google Scholar
  6. 6.
    Kalkbrener, M.: Solving Systems of Algebraic Equations Using Gröbner Base. In: Davenport, J. (ed.) EUROCAL 1987. LNCS, vol. 378, pp. 293–297. Springer, Heidelberg (1987)Google Scholar
  7. 7.
    Kalkbrener, M.: On the stability of Gröbner bases under specializations. Journal of Symbolic Computation 24, 51–58 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kapur, D.: An approach for solving systems of parametric polynomial equations. In: Saraswat, V., Hentenryck, P. (eds.) Principles and Practice of Constraint Programming, pp. 217–244. MIT Press (1995)Google Scholar
  9. 9.
    Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Watt, S. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 29–36. ACM Press (2010)Google Scholar
  10. 10.
    Montes, A.: A new algorithm for discussing Gröbner basis with parameters. Journal of Symbolic Computation 33(1-2), 183–208 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. Journal of Symbolic Computation 45(12), 1391–1425 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Nabeshima, K.: A speed-up of the algorithm for computing comprehensive Gröbner systems. In: Brown, C. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 299–306. ACM Press (2007)Google Scholar
  13. 13.
    Noro, M., Takeshima, T.: Risa/Asir- A computer algebra system. In: Wang, P. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 387–396. ACM Press (1992)Google Scholar
  14. 14.
    Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases. Journal of Symbolic Computation 36(3-4), 649–667 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Dumas, J.-G. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 326–331. ACM Press (2006)Google Scholar
  16. 16.
    Weispfenning, V.: Comprehensive Gröbner bases. Journal of Symbolic Computation 14(1), 1–29 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Weispfenning, V.: Canonical comprehensive Gröbner bases. Journal of Symbolic Computation 36(3-4), 669–683 (2003)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Katsusuke Nabeshima
    • 1
  1. 1.Institute of Socio-Arts and SciencesUniversity of TokushimaTokushimaJapan

Personalised recommendations