Sparse Polynomial Powering Using Heaps

  • Michael Monagan
  • Roman Pearce
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7442)


We modify an old algorithm for expanding powers of dense polynomials to make it work for sparse polynomials, by using a heap to sort monomials. It has better complexity and lower space requirements than other sparse powering algorithms for dense polynomials. We show how to parallelize the method, and compare its performance on a series of benchmark problems to other methods and the Magma, Maple and Singular computer algebra systems.


Sparse Polynomials Powers Heaps Parallel Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fateman, R.: On the computation of powers of sparse polynomials. Studies in Appl. Math. 53, 145–155 (1974)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Fateman, R.: Polynomial multiplication, powers, and asymptotic analysis: some comments. SIAM J. Comput. 3(3), 196–213 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fettis, H.: Algorithm 158. Communications of the ACM 6, 104 (1963)CrossRefGoogle Scholar
  4. 4.
    Gentleman, M.: Optimal multiplication chains for computing a power of a symbolic polynomial. Math Comp. 26(120), 935–939 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Heindel, L.: Computation of powers of multivariate polynomials over the integers. J. Comput. Syst. Sci. 6(1), 1–8 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Horowitz, E., Sahni, S.: The computation of powers of symbolic polynomials. SIAM J. Comput. 4(2), 201–208 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Johnson, S.C.: Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8(3), 63–71 (1974)CrossRefGoogle Scholar
  8. 8.
    Knuth, D.: The Art of Computer Programming, Seminumerical Algorithms, vol. 2. Addison-Wesley (1998)Google Scholar
  9. 9.
    Moenck, R.: Another Polynomial Homomorphism. Acta Informatica 6, 153–169 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ponder, C.: Parallel multiplication and powering of polynomials. J. Symbolic. Comp. 11(4), 307–320 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Probst, D., Alagar, V.: A Family of Algorithms for Powering Sparse Polynomials. SIAM J. Comput. 8(4), 626–644 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Monagan, M., Pearce, R.: Parallel Sparse Polynomial Multiplication Using Heaps. In: Proc. of ISSAC 2009, pp. 295–315. ACM Press (2009)Google Scholar
  13. 13.
    Monagan, M., Pearce, R.: Polynomial Division Using Dynamic Arrays, Heaps, and Packed Exponent Vectors. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 295–315. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Monagan, M., Pearce, R.: Sparse Polynomial Division Using a Heap. J. Symbolic. Comp. 46(7), 807–922 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Monagan, M., Pearce, R.: Parallel Sparse Polynomial Division Using Heaps. In: Proc. of PASCO 2010, pp. 105–111. ACM Press (2010)Google Scholar
  16. 16.
    Rowan, W.: Efficient Polynomial Substitutions of a Sparse Argument. ACM Sigsam Bulletin 15(3), 17–23 (1981)zbMATHCrossRefGoogle Scholar
  17. 17.
    Zeilberger, D.: The J.C.P. Miller recurrence for exponentiating a polynomial, and its q-analog. J. Difference Eqns and Appls 1(1), 57–60 (1995), MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Monagan
    • 1
  • Roman Pearce
    • 1
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations