Skip to main content

Electronic Properties of Heterostructures

  • Chapter
  • 4409 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

This chapter presents electronic properties of a junction between two semiconductors and electronic states in low-dimensional structures. First, we consider the valence and conduction bands of zincblende and wurtzite bulk semiconductors and illustrate the effects of strain and alloying. Then, models describing the band lineup of heterostructures are introduced and the effect of interface stoichiometry is illustrated. The characteristic scale for the occurrence of size quantization is discussed, and electronic states in quantum wells, quantum wires, and quantum dots are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996)

    MATH  Google Scholar 

  2. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  3. M. Suzuki, T. Uenoyama, First-principles calculations of effective-mass parameters of AlN and GaN. Phys. Rev. B 52, 8132 (1995)

    Article  ADS  Google Scholar 

  4. G.L. Bir, G.E. Pirkus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974)

    Google Scholar 

  5. F.H. Pollak, M. Cardona, Piezo-electroreflectance in Ge, GaAs, and Si. Phys. Rev. 172, 816 (1968)

    Article  ADS  Google Scholar 

  6. C.G. van de Walle, R.M. Martin, Theoretical calculation of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34, 5621 (1986)

    Article  ADS  Google Scholar 

  7. K. Shahzad, D.J. Olego, C.G. van de Walle, Optical characterization and band offsets in ZnSe-ZnS x Se1−x strained-layer superlattices. Phys. Rev. B 38, 1417 (1988)

    Article  ADS  Google Scholar 

  8. C.G. van de Walle, Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871 (1989)

    Article  ADS  Google Scholar 

  9. D. Fröhlich, W. Nieswand, U.W. Pohl, J. Wrzesinski, Two-photon spectroscopy of ZnSe under uniaxial stress. Phys. Rev. B 52, 14652 (1995)

    Article  ADS  Google Scholar 

  10. F. Kubacki, J. Gutowski, D. Hommel, M. Heuken, U.W. Pohl, Determination of deformation potentials in ZnSe/GaAs strained-layer heterostructures. Phys. Rev. B 54, 2028 (1996)

    Article  ADS  Google Scholar 

  11. L.D. Laude, F.H. Pollak, M. Cardona, Effects of uniaxial stress on the indirect exciton spectrum of silicon. Phys. Rev. B 3, 2623 (1971)

    Article  ADS  Google Scholar 

  12. H. Mathieu, P. Merle, E.L. Ameziane, B. Archilla, J. Camassel, Deformation potentials of the direct and indirect absorption edges of GaP. Phys. Rev. B 19, 2209 (1984)

    Article  ADS  Google Scholar 

  13. P. Pfeffer, I. Gorczyca, W. Zawadzki, Theory of free-electron optical absorption in n-GaAs. Solid State Commun. 51, 179 (1984). Table 1 with references therein

    Article  ADS  Google Scholar 

  14. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222 (1999)

    Article  ADS  Google Scholar 

  15. F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III–V nitrides. Phys. Rev. B 56, R10024 (1997)

    Article  ADS  Google Scholar 

  16. U. Rössler (ed.), Semiconductor II–VI and I–VII Compounds; Semimagnetic Compounds. Landolt-Börnstein III/41B, revised and updated edition of Vols. III/17 and 22 (Springer, Heidelberg, 1999)

    Google Scholar 

  17. O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 87, 334 (2000)

    Article  ADS  Google Scholar 

  18. Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34, 149 (1967)

    Article  ADS  Google Scholar 

  19. L. Viña, S. Logothetidis, M. Cardona, Temperature dependence of the dielectric function of germanium. Phys. Rev. B 30, 1979 (1984)

    Article  ADS  Google Scholar 

  20. K.P. O’Donnell, X. Chen, Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 58, 2924 (1991)

    Article  ADS  Google Scholar 

  21. R. Pässler, Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors. Phys. Status Solidi B 216, 975 (1999)

    Article  ADS  Google Scholar 

  22. W. Bludau, A. Onton, W. Heinke, Temperature dependence of the band gap of silicon. J. Appl. Phys. 45, 1846 (1974)

    Article  ADS  Google Scholar 

  23. J.A. Van Vechten, T.K. Bergstresser, Electronic structures of semiconductor alloys. Phys. Rev. B 1, 3351 (1970)

    Article  ADS  Google Scholar 

  24. C.K. Williams, T.H. Glisson, J.R. Hauser, M.A. Littlejohn, Energy bandgap and lattice constant contours of III–V quaternary alloys of the form A x B y C z D or AB x C y D z . J. Electron. Mater. 7, 639 (1978)

    Article  ADS  Google Scholar 

  25. A. Baldereschi, E. Hess, K. Maschke, H. Neumann, K.-R. Schulze, K. Unger, Energy band structure of Al x Ga1−x As. J. Phys. C, Solid State Phys. 10, 4709 (1977)

    Article  ADS  Google Scholar 

  26. A.-B. Chen, A. Sher, Electronic structure of III–V semiconductors and alloys using simple orbitals. Phys. Rev. B 22, 3886 (1980)

    Article  ADS  Google Scholar 

  27. A.-B. Chen, A. Sher, Electronic structure of pseudobinary semiconductor alloys Al x Ga1−x As, GaP x As1−x , and Ga x In1−x P. Phys. Rev. B 23, 5360 (1981)

    Article  ADS  Google Scholar 

  28. J.E. Bernard, A. Zunger, Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. Phys. Rev. B 36, 3199 (1987)

    Article  ADS  Google Scholar 

  29. A.T. Gorelenok, A.G. Dzigasov, P.P. Moskvin, V.S. Sorokin, I.S. Tarasov, Dependence of the band gap on the composition of In1−x Ga x As1−y P y solid solutions. Sov. Phys. Semicond. 15, 1400 (1981)

    Google Scholar 

  30. E.T. Yu, J.O. McCaldin, T.C. McGill, Band offsets in semiconductor heterojunctions. Solid State Physics, vol. 46 (Academic Press, New York, 1992), pp. 1–146

    Google Scholar 

  31. R.L. Anderson, Experiments on Ge-GaAs heterojunctions. Solid-State Electron. 5, 341 (1962)

    Article  ADS  Google Scholar 

  32. A.G. Milnes, D.L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (Academic Press, New York, 1972)

    Google Scholar 

  33. W.R. Frensley, H. Kroemer, Theory of the energy-band lineup at an abrupt semiconductor heterojunction. Phys. Rev. B 16, 2642 (1977)

    Article  ADS  Google Scholar 

  34. W.A. Harrison, Elementary theory of heterojunctions. J. Vac. Sci. Technol. 14, 1016 (1977)

    Article  ADS  Google Scholar 

  35. S.-H. Wei, A. Zunger, Role of d orbitals in valence-band offsets of common-anion semiconductors. Phys. Rev. Lett. 59, 144 (1987)

    Article  ADS  Google Scholar 

  36. J. Tersoff, Band lineups at II–VI heterojunctions: failure of the common-anion rule. Phys. Rev. Lett. 56, 2755 (1986)

    Article  ADS  Google Scholar 

  37. A.D. Katnani, G. Margaritondo, Empirical rule to predict heterojunction band discontinuities. J. Appl. Phys. 54, 2522 (1983)

    Article  ADS  Google Scholar 

  38. A.D. Katnani, R.S. Bauer, Commutativity and transitivity of GaAs-AlAs-Ge(100) band offsets. Phys. Rev. B 33, 1106 (1986)

    Article  ADS  Google Scholar 

  39. J.M. Langer, H. Heinrich, Deep-level impurities: a possible guide to prediction of band-edge discontinuities in semiconductor heterojunctions. Phys. Rev. Lett. 55, 1414 (1985)

    Article  ADS  Google Scholar 

  40. A. Zunger, Electronic structure of 3d transition-atom impurities in semiconductors, in Solid State Physics, vol. 39 (Academic Press, New York, 1986), pp. 275–464

    Google Scholar 

  41. C.G. van de Walle, J. Neugebauer, Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626 (2003)

    Article  ADS  Google Scholar 

  42. J. Tersoff, Theory of semiconductor heterojunctions: the role of quantum dipoles. Phys. Rev. B 30, 4874 (1984)

    Article  ADS  Google Scholar 

  43. J. Tersoff, Shottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465 (1984)

    Article  ADS  Google Scholar 

  44. C.G. van de Walle, R.M. Martin, Theoretical study of band offsets at semiconductor interfaces. Phys. Rev. B 35, 8154 (1987)

    Article  ADS  Google Scholar 

  45. R.G. Dandrea, S. Froyen, A. Zunger, Stability and band offsets of heterovalent superlattices: Si/GaP, Ge/GaAs, and Si/GaAs. Phys. Rev. B 42, 3213 (1990)

    Article  ADS  Google Scholar 

  46. S. Rubini, E. Milocco, L. Sorba, E. Pelucchi, A. Franciosi, A. Garulli, A. Parisini, Y. Zhuang, G. Bauer, Structural and electronic properties of ZnSe/AlAs heterostructures. Phys. Rev. B 63, 155312 (2001)

    Article  ADS  Google Scholar 

  47. W.A. Harrison, E.A. Kraut, J.R. Waldrop, R.W. Grant, Polar heterojunction interfaces. Phys. Rev. B 18, 4402 (1978)

    Article  ADS  Google Scholar 

  48. A. Kley, J. Neugebauer, Atomic and electronic structure of the GaAs/ZnSe (001) interface. Phys. Rev. B 50, 8616 (1994)

    Article  ADS  Google Scholar 

  49. R.G. Dandrea, S. Froyen, A. Zunger, Stability and band offsets of heterovalent superlattices: Si/GaP, Ge/GaAs, and Si/GaAs. Phys. Rev. B 42, 3213 (1990)

    Article  ADS  Google Scholar 

  50. R. Nicolini, L. Vanzetti, G. Mula, G. Bratina, L. Sorba, A. Franciosi, M. Peressi, S. Baroni, R. Resta, A. Baldereschi, Local interface composition and band discontinuities in heterovalent heterostructures. Phys. Rev. Lett. 72, 294 (1994)

    Article  ADS  Google Scholar 

  51. A. Bonanni, L. Vanzetti, L. Sorba, A. Franciosi, M. Lomascolo, P. Prete, R. Cingolani, Optimization of interface parameters and bulk properties in ZnSe-GaAs heterostructures. Appl. Phys. Lett. 66, 1092 (1995)

    Article  ADS  Google Scholar 

  52. N. Kobayashi, Single quantum well photoluminescence in ZnSe/GaAs/AlGaAs grown by migration-enhanced epitaxy. Appl. Phys. Lett. 55, 1235 (1989)

    Article  ADS  Google Scholar 

  53. M. Städele, J.A. Majewski, P. Vogl, Stability and band offsets of polar GaN/SiC(001) and AlN/SiC(001) interfaces. Phys. Rev. B 56, 6911 (1997)

    Article  ADS  Google Scholar 

  54. F. Bernardini, M. Peressi, V. Fiorentini, Band offsets and stability of BeTe/ZnSe(100) heterojunctions. Phys. Rev. B 62, R16302 (2000)

    Article  ADS  Google Scholar 

  55. Z.-G. Wang, L.-Å. Ledebo, H.G. Grimmeis, Optical properties of iron doped Al x Ga1−x As alloys. J. Appl. Phys. 56, 2762 (1984)

    Article  ADS  Google Scholar 

  56. Z.-G. Wang, L.-Å. Ledebo, H.G. Grimmeis, Nuovo Cimento 2D, 1718 (1983)

    ADS  Google Scholar 

  57. L. Samuelson, S. Nilsson, Z.-G. Wang, H.G. Grimmeis, Direct evidence for random-alloy splitting of Cu levels in GaAs1−x P x . Phys. Rev. Lett. 53, 1501 (1984)

    Article  ADS  Google Scholar 

  58. A.A. Reeder, J.M. Chamberlain, Optical study of the deep manganese acceptor in In1−x Ga x P: evidence for vacuum-level pinning. Solid State Commun. 54, 705 (1985)

    Article  ADS  Google Scholar 

  59. M. Grundmann, D. Bimberg, Anisotropy effects on excitonic properties in realistic quantum wells. Phys. Rev. B 38, 13486 (1988)

    Article  ADS  Google Scholar 

  60. S. Adachi, GaAs, AlAs and Al x Ga1−x As: material parameters for use in research and device applications. J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  61. S. Adachi, Physical Properties of III–V Semiconductor Compounds (Wiley, New York, 1992)

    Book  Google Scholar 

  62. D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, G. Cantwell, W.C. Harsch, Valence-band ordering in ZnO. Phys. Rev. B 60, 2340 (1999)

    Article  ADS  Google Scholar 

  63. W. Shan, B.D. Little, A.J. Fischer, J.J. Song, B. Goldenberg, W.G. Perry, M.D. Bremser, R.F. Davis, Binding energy for the intrinsic excitons in wurtzite GaN. Phys. Rev. B 54, 16369 (1996)

    Article  ADS  Google Scholar 

  64. G. Dorda, Surface quantization in semiconductors, in Festkörperprobleme, ed. by H.J. Queisser. Advances in Solid State Physics, vol. 13 (Pergamon/Vieweg, Braunschweig, 1973), p. 215

    Google Scholar 

  65. G. Bastard, J.A. Brum, Electronic states in semiconductor heterostructures. IEEE J. Quantum Electron. QE-22, 1625 (1986)

    Article  ADS  Google Scholar 

  66. R. Dingle, W. Wiegmann, C.H. Henry, Quantum states of confined carriers in very thin Al x Ga1−x As-GaAs-Al x Ga1−x As heterostructures. Phys. Rev. Lett. 33, 827 (1974)

    Article  ADS  Google Scholar 

  67. R. Dingle, Confined carrier quantum states in ultrathin semiconductor heterostructures, in Festkörperprobleme, ed. by H.J. Queisser. Advances in Solid State Physics, vol. 15 (Pergamon/Vieweg, Braunschweig, 1975), p. 21

    Chapter  Google Scholar 

  68. K. Suzuki, K. Kanisawa, C. Janer, S. Perraud, K. Takashina, T. Fujisawa, Y. Hirayama, Spatial imaging of two-dimensional electronic states in semiconductor quantum wells. Phys. Rev. Lett. 98, 136802 (2007)

    Article  ADS  Google Scholar 

  69. R.C. Miller, D.A. Kleiman, W.A. Nordland Jr., A.C. Gossard, Luminescence studies of optically pumped quantum wells in GaAs-Al x Ga1−x As multilayer structures. Phys. Rev. B 22, 863 (1980)

    Article  ADS  Google Scholar 

  70. P.L. Gourley, R.M. Biefeld, Quantum size effects in GaAs/GaAs x P1−x strained-layer superlattices. Appl. Phys. Lett. 45, 749 (1984)

    Article  ADS  Google Scholar 

  71. R.C. Miller, D.A. Kleiman, O. Munteanu, W.T. Tsang, New transitions in the photoluminescence of GaAs quantum wells. Appl. Phys. Lett. 39, 1 (1981)

    Article  ADS  Google Scholar 

  72. B. Deveaud, J.Y. Emery, A. Chomette, B. Lambert, M. Baudet, Observation of one-monolayer size fluctuations in a GaAs/GaAlAs superlattice. Appl. Phys. Lett. 45, 1078 (1984)

    Article  ADS  Google Scholar 

  73. A. Forchel, H. Leier, B.E. Maile, R. Germann, Fabrication and optical spectroscopy of ultra small III–V compound semiconductor structures, in Festkörperprobleme, ed. by U. Rössler. Advances in Solid State Physics, vol. 28 (Pergamon/Vieweg, Braunschweig, 1988), p. 99

    Google Scholar 

  74. X.-L. Wang, V. Voliotis, Epitaxial growth and optical properties of semiconductor quantum wires. J. Appl. Phys. 99, 121301 (2006)

    Article  ADS  Google Scholar 

  75. F. Vouilloz, D.Y. Oberli, M.-A. Dupertuis, A. Gustafsson, F. Reinhardt, E. Kapon, Polarization anisotropy and valence band mixing in semiconductor quantum wires. Phys. Rev. Lett. 78, 1580 (1997)

    Article  ADS  Google Scholar 

  76. F. Vouilloz, D.Y. Oberli, M.-A. Dupertuis, A. Gustafsson, F. Reinhardt, E. Kapon, Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires. Phys. Rev. B 57, 12378 (1998)

    Article  ADS  Google Scholar 

  77. Z.-Y. Deng, X. Chen, T. Ohji, T. Kobayashi, Subband structures and exciton and impurity states in V-shaped GaAs-Ga1−x Al x As quantum wires. Phys. Rev. B 61, 15905 (2000)

    Article  ADS  Google Scholar 

  78. E. Martinet, M.-A. Dupertuis, F. Reinhardt, G. Biasiol, E. Kapon, O. Stier, M. Grundmann, D. Bimberg, Separation of strain and quantum-confinement effects in the optical spectra of quantum wires. Phys. Rev. B 61, 4488 (2000)

    Article  ADS  Google Scholar 

  79. E. Kapon, G. Biasiol, D.M. Hwang, E. Colas, M. Walther, Self-ordering mechanism of quantum wires grown on non-planar substrates. Solid-State Electron. 40, 815 (1996)

    Article  ADS  Google Scholar 

  80. T. Someya, H. Akiyama, H. Sakaki, Enhanced binding energy of one-dimensional excitons in quantum wires. Phys. Rev. Lett. 76, 2965 (1996)

    Article  ADS  Google Scholar 

  81. T. Ogawa, T. Takagahara, An exact treatment of excitonic effects. Phys. Rev. B 44, 8138 (1991)

    Article  ADS  Google Scholar 

  82. D. Gershoni, M. Katz, W. Wegscheider, L.N. Pfeiffer, R.A. Logan, K. West, Radiative lifetimes of excitons in quantum wires. Phys. Rev. B 50, 8930 (1994)

    Article  ADS  Google Scholar 

  83. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999)

    Google Scholar 

  84. S. Rodt, A. Schliwa, K. Pötschke, F. Guffarth, D. Bimberg, Correlation and few particle properties of self-organized InAs/GaAs quantum dots. Phys. Rev. B 71, 155325 (2005)

    Article  ADS  Google Scholar 

  85. A. Schliwa, M. Winkelnkemper, D. Bimberg, Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/GaAs quantum dots. Phys. Rev. B 76, 205324 (2007)

    Article  ADS  Google Scholar 

  86. T. Maltezopoulos, A. Bolz, C. Meyer, C. Heyn, W. Hansen, M. Morgenstern, R. Wiesendanger, Wave-function mapping of InAs quantum dots by scanning tunneling spectroscopy. Phys. Rev. Lett. 91, 196804 (2003)

    Article  ADS  Google Scholar 

  87. A. Urbieta, B. Grandidier, J.P. Nys, D. Deresmes, D. Stiévenard, A. Lemaître, G. Patriarche, Y.M. Niquet, Scanning tunneling spectroscopy of cleaved InAs/GaAs quantum dots at low temperatures. Phys. Rev. B 77, 155313 (2008)

    Article  ADS  Google Scholar 

  88. O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys. Rev. B 59, 5688 (1999)

    Article  ADS  Google Scholar 

  89. M. Scholz, S. Büttner, O. Benson, A.I. Toropov, A.K. Bakarov, A.K. Kalagin, A. Lochmann, E. Stock, O. Schulz, F. Hopfer, V.A. Haisler, D. Bimberg, Non-classical light emission from a single electrically driven quantum dot. Opt. Express 15, 9107 (2007)

    Article  ADS  Google Scholar 

  90. F. Guffarth, S. Rodt, A. Schliwa, K. Pötschke, D. Bimberg, Many-particle effects in self-organized quantum dots. Physica E 25, 261 (2004)

    Article  ADS  Google Scholar 

  91. P. Vashishta, R.K. Kalia, Universal behavior of exchange-correlation energy in electron-hole liquid. Phys. Rev. B 25, 6492 (1982)

    Article  ADS  Google Scholar 

  92. G. Tränkle, E. Lach, A. Forchel, F. Scholz, C. Ell, H. Haug, G. Weimann, G. Griffiths, H. Kroemer, S. Subbanna, General relation between band-gap renormalization and carrier density in two-dimensional electron-hole plasmas. Phys. Rev. B 36, 6712 (1987)

    Article  ADS  Google Scholar 

  93. R. Ambigapathy, I. Bar-Joseph, D.Y. Oberli, S. Haacke, M.J. Brasil, F. Reinhard, E. Kapon, B. Deveaud, Coulomb correlation and band gap renormalization at high carrier densities in quantum wires. Phys. Rev. Lett. 78, 3579 (1997)

    Article  ADS  Google Scholar 

  94. R. Heitz, F. Guffarth, I. Mukhametzhanov, M. Grundmann, A. Madhukar, D. Bimberg, Many-body effects on the optical spectra of InAs/GaAs quantum dots. Phys. Rev. B 62, 16881 (2000)

    Article  ADS  Google Scholar 

  95. U.W. Pohl, InAs/GaAs quantum dots with multimodal size distribution, in Self-assembled Quantum Dots, ed. by Z.M. Wang (Springer, New York, 2008), pp. 43–66, Chap. 3

    Chapter  Google Scholar 

  96. U.W. Pohl, K. Pötschke, A. Schliwa, F. Guffarth, D. Bimberg, N.D. Zakharov, P. Werner, M.B. Lifshits, V.A. Shchukin, D.E. Jesson, Evolution of a multimodal distribution of self-organized InAs/GaAs quantum dots. Phys. Rev. B 72, 245332 (2005)

    Article  ADS  Google Scholar 

  97. R. Heitz, F. Guffarth, K. Pötschke, A. Schliwa, D. Bimberg, N.D. Zakharov, P. Werner, Shell-like formation of self-organized InAs/GaAs quantum dots. Phys. Rev. B 71, 045325 (2005)

    Article  ADS  Google Scholar 

  98. S. Raymond, S. Studenikin, S.-J. Cheng, M. Pioro-Ladrière, M. Ciorga, P.J. Poole, M.D. Robertson, Families of islands in InAs/InP self-assembled quantum dots: a census obtained from magneto-photoluminescence. Semicond. Sci. Technol. 18, 385 (2003)

    Article  ADS  Google Scholar 

  99. S. Rodt, R. Seguin, A. Schliwa, F. Guffarth, K. Pötschke, U.W. Pohl, D. Bimberg, Size-dependent binding energies and fine-structure splitting of excitonic complexes in single InAs/GaAs quantum dots. J. Lumin. 122–123, 735 (2007)

    Article  Google Scholar 

  100. S. Rodt, A. Schliwa, K. Pötschke, F. Guffarth, D. Bimberg, Correlation of structural and few-particle properties of self-organized InAs/GaAs quantum dots. Phys. Rev. B 71, 155325 (2005)

    Article  ADS  Google Scholar 

  101. U.W. Pohl, R. Seguin, S. Rodt, A. Schliwa, K. Pötschke, D. Bimberg, Control of structural and excitonic properties of self-organized InAs/GaAs quantum dots. Physica E 35, 285 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pohl, U.W. (2013). Electronic Properties of Heterostructures. In: Epitaxy of Semiconductors. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32970-8_3

Download citation

Publish with us

Policies and ethics