Advertisement

Controlling the Parameters of the Particle Swarm Optimization with a Self-Organized Criticality Model

  • Carlos M. Fernandes
  • Juan J. Merelo
  • Agostinho C. Rosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7492)

Abstract

This paper investigates a Particle Swarm Optimization (PSO) with a Self-Organized Criticality (SOC) strategy that controls the parameter values and perturbs the position of the particles. The algorithm uses a SOC system known as Bak-Sneppen for establishing the inertia weight and acceleration coefficients for each particle in each time-step. Besides adjusting the parameters, the SOC model may be also used to perturb the particles’ positions, thus increasing exploration and preventing premature convergence. The implementation of both schemes is straightforward and does not require hand-tuning. An empirical study compares the Bak-Sneppen PSO (BS-PSO) with other PSOs, including a state-of-the-art algorithm with dynamic variation of the weight and perturbation of the particles. The results demonstrate the validity of the algorithm.

Keywords

Particle Swarm Optimization Inertia Weight Ring Topology Dynamic Optimization Problem Acceleration Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arumugam, M.S., Rao, M.V.C.: On the Performance of the Particle Swarm Optimization Algorithm with Various Inertia Weight Variants for Computing Optimal Control of a Class of Hybrid Systems. Discrete Dynamics in Nature and Society (2006), Article ID 79295, 17 pages (2006)Google Scholar
  2. 2.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized Criticality: an Explanation of 1/f Noise. Physical Review Letters 59(4), 381–384 (1987)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bak, P., Sneppen, K.: Punctuated Equilibrium and Criticality in a Simple Model of Evolution. Physical Review Letters 71(24), 4083–4086 (1993)CrossRefGoogle Scholar
  4. 4.
    Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proc. IEEE of the Congress on Evolutionary Computation 2001, pp. 94–97. IEEE Press (2001)Google Scholar
  5. 5.
    Fernandes, C.M., Merelo, J.J., Ramos, V., Rosa, A.C.: A Self-Organized Criticality Mutation Operator for Dynamic Optimization Problems. In: Proc. of the 2008 Genetic and Evolutionary Computation Conference, pp. 937–944. ACM (2008)Google Scholar
  6. 6.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  7. 7.
    Krink, T., Rickers, P., René, T.: Applying Self-organized Criticality to Evolutionary Algorithms. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN VI. LNCS, vol. 1917, pp. 375–384. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Løvbjerg, M., Krink, T.: Extending particle swarm optimizers with self-organized criticality. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1588–1593. IEEE Computer Society (2002)Google Scholar
  9. 9.
    Ratnaweera, A., Halgamuge, K.S., Watson, H.C.: Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–254 (2004)CrossRefGoogle Scholar
  10. 10.
    Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proc. of IEEE 1998 Congress on Evolutionary Computation, pp. 69–73. IEEE Press (1998)Google Scholar
  11. 11.
    Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Proc. of the IEEE. Congress on Evolutionary Computation, pp. 101–106 (1999)Google Scholar
  12. 12.
    Suresh, K., Ghosh, S., Kundu, D., Sen, A., Das, S., Abraham, A.: Inertia-Adaptive Particle Swarm Optimizer for Improved Global Search. In: Proceedings of the 8th International Conference on Intelligent Systems Design and Applications, vol. 2, pp. 253–258. IEEE, Washington, DC (2008)CrossRefGoogle Scholar
  13. 13.
    Tinós, R., Yang, S.: A self-organizing Random Immigrants Genetic Algorithm for Dynamic Optimization Problems. In: Genetic Programming and Evolvable Machines, vol. 8(3), pp. 255–286 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carlos M. Fernandes
    • 1
    • 2
  • Juan J. Merelo
    • 2
  • Agostinho C. Rosa
    • 1
  1. 1.Technical University of LisbonPortugal
  2. 2.University of GranadaSpain

Personalised recommendations