Skip to main content

Stellar Tides

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 861))

Abstract

To a first approximation, a binary star behaves as a closed system; therefore it conserves its angular momentum while evolving to its state of minimum kinetic energy, where the orbits are circular, all spins are aligned, and the components rotate in synchronism with the orbital motion. The pace at which this final state is reached depends on the physical processes responsible for the dissipation of the tidal kinetic energy. For stars with an outer convection zone, the dominant mechanism is presumably the turbulent dissipation acting on the equilibrium tide. For stars with an outer radiation zone, the major dissipative process is radiative damping operating on the dynamical tide.

I shall review these physical processes, discuss uncertainties in their present treatment, describe the latest developments, and compare the theoretical predictions with the observed properties concerning the orbital circularization of close binaries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This value depends little on mass [46]; if it were translated into tidal periods, the transition periods would spread between 1 to 2 days, depending on mass, which explains why it is preferable to use R/a for the observational test.

References

  1. Claret, A., Cunha, N.C.S.: Astron. Astrophys. 318, 187 (1997)

    ADS  Google Scholar 

  2. Darwin, G.H.: Philos. Trans. R. Soc. Lond. 170, 1 (1879)

    Article  MATH  Google Scholar 

  3. Duquennoy, A., Mayor, M., Mermilliod, J.-C.: In: Duquennoy, A. Mayor, M. (eds.) Binaries as Tracers of Star Formation, p. 52. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  4. Giuricin, G., Mardirossian, F., Mezzetti, M.: Astron. Astrophys. 134, 365 (1984)

    ADS  Google Scholar 

  5. Goldreich, P., Nicholson, P.D.: Icarus 30, 301 (1977)

    Article  ADS  Google Scholar 

  6. Goldreich, P., Nicholson, P.D.: Astrophys. J. 342, 1079 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  7. Goldreich, P., Soter, S.: Icarus 5, 375 (1966)

    Article  ADS  Google Scholar 

  8. Goodman, J., Dickson, E.S.: Astrophys. J. 507, 938 (1998)

    Article  ADS  Google Scholar 

  9. Goodman, J., Oh, S.P.: Astrophys. J. 486, 403 (1997)

    Article  ADS  Google Scholar 

  10. Hasan, S.S., Zahn, J.-P., Christensen-Dalsgaard, J.: Astron. Astrophys. 444, L29 (2005)

    Article  ADS  Google Scholar 

  11. Hut, P.: Astron. Astrophys. 92, 167 (1980)

    MathSciNet  ADS  MATH  Google Scholar 

  12. Hut, P.: Astron. Astrophys. 99, 126 (1981)

    ADS  MATH  Google Scholar 

  13. Koch, R.H., Hrivnak, B.J.: Astron. J. 86, 438 (1981)

    Article  ADS  Google Scholar 

  14. Kopal, Z.: Close Binary Systems. Chapman & Hall, London (1959)

    Google Scholar 

  15. Kumar, P., Goodman, J.: Astrophys. J. 466, 946 (1996)

    Article  ADS  Google Scholar 

  16. Landsman, W., Aparaicio, J., Bergeron, P., Di Stefano, R., Stecher, T.P.: Astrophys. J. 481, L93 (1997)

    Article  ADS  Google Scholar 

  17. Latham, D.W., Mathieu, R.D., Milone, A.E., Davis, R.J.: In Kondo, Y., Sistero, R.F., Polidan, R.S. (eds.) Evolutionary Processes in Interacting Binary Stars. IAU Symp., vol. 151, p. 471. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  18. Latham, D.W., Stefanik, R.P., Torres, G., Davis, R.J., Mazeh, T., Carney, B.W., Laird, J.P., Morse, J.A.: Astron. J. 124, 1144 (2002)

    Article  ADS  Google Scholar 

  19. Le Bars, M., Lacaze, L., Le Dizès, S., Le Gal, P., Rieutord, M.: Phys. Earth Planet. Inter. 178, 48 (2009)

    Article  ADS  Google Scholar 

  20. Levrard, B., Winidoerfer, C., Chabrier, G.: Astrophys. J. 692, 9L (2009)

    Article  ADS  Google Scholar 

  21. Mathieu, R.D., Mazeh, T.: Astrophys. J. 326, 256 (1988)

    Article  ADS  Google Scholar 

  22. Mathieu, R.D., Meibom, S., Dolan, C.: Astrophys. J. 602, 121 (2004)

    Article  ADS  Google Scholar 

  23. Mayor, M., Mermilliod, J.-C.: In: Maeder, A., Renzini, A. (eds.) Observational Tests of the Stellar Evolution Theory. IAU Symp., vol. 105, p. 411 (1984)

    Chapter  Google Scholar 

  24. Mazeh, T., Tamuz, O., North, P.: Mon. Not. R. Astron. Soc. 367, 1531 (2006)

    Article  ADS  Google Scholar 

  25. Melo, C.H.F., Covino, E., Alcalá, J.M., Torres, G.: Astron. Astrophys. 378, 898 (2001)

    Article  ADS  Google Scholar 

  26. Mermilliod, J.-C., Rosvick, J.M., Duquennoy, A., Mayor, M.: Astron. Astrophys. 265, 513 (1992)

    ADS  Google Scholar 

  27. North, P., Zahn, J.-P.: Astron. Astrophys. 405, 677 (2003)

    Article  ADS  Google Scholar 

  28. Ogilvie, G.I., Lin, D.N.C.: Astrophys. J. 610, 477 (2004)

    Article  ADS  Google Scholar 

  29. Ogilvie, G.I., Lin, D.N.C.: Astrophys. J. 661, 1180 (2007)

    Article  ADS  Google Scholar 

  30. Penev, K., Sasselov, D., Robinson, F., Demarque, P.: Astrophys. J. 655, 1166 (2007)

    Article  ADS  Google Scholar 

  31. Penev, K., Sasselov, D., Robinson, F., Demarque, P.: Astrophys. J. 704, 930 (2009)

    Article  ADS  Google Scholar 

  32. Remus, F., Mathis, S., Zahn, J.-P.: Astron. Astrophys. 544, 132 (2012)

    Article  ADS  Google Scholar 

  33. Rieutord, M.: In: Eennens, Ph., Maeder, A. (eds.) Stellar Rotation. IAU Symp., vol. 215, p. 394 (2004)

    Google Scholar 

  34. Rocca, A.: Astron. Astrophys. 213, 114 (1989)

    ADS  Google Scholar 

  35. Savonije, G.J., Witte, M.G.: Astron. Astrophys. 386, 111 (2002)

    Article  ADS  Google Scholar 

  36. Stahler, S.W.: Astrophys. J. 274, 822 (1983)

    Article  ADS  Google Scholar 

  37. Stahler, S.W.: Astrophys. J. 332, 804 (1988)

    Article  ADS  Google Scholar 

  38. Talon, S.: EAS Publ. Ser. 32, 81 (2008)

    Article  Google Scholar 

  39. Terquem, C., Papaloizou, J.C.B., Nelson, R.P., Lin, D.N.C.: Astrophys. J. 502, 788 (1998)

    Article  ADS  Google Scholar 

  40. Verbunt, F., Phinney, E.S.: Astron. Astrophys. 296, 709 (1995)

    ADS  Google Scholar 

  41. Witte, M.G., Savonije, G.J.: Astron. Astrophys. 341, 842 (1999)

    ADS  Google Scholar 

  42. Witte, M.G., Savonije, G.J.: Astron. Astrophys. 350, 129 (1999)

    ADS  Google Scholar 

  43. Witte, M.G., Savonije, G.J.: Astron. Astrophys. 386, 222 (2002)

    Article  ADS  Google Scholar 

  44. Zahn, J.-P.: Ann. Astrophys. 29, 489 (1966)

    ADS  Google Scholar 

  45. Zahn, J.-P.: Astron. Astrophys. 41, 329 (1975)

    ADS  Google Scholar 

  46. Zahn, J.-P.: Astron. Astrophys. 57, 383 (1977)

    ADS  Google Scholar 

  47. Zahn, J.-P.: Astron. Astrophys. 220, 112 (1989)

    ADS  Google Scholar 

  48. Zahn, J.-P.: EAS Publ. Ser. 26, 49 (2007)

    Article  Google Scholar 

  49. Zahn, J.-P., Bouchet, L.: Astron. Astrophys. 223, 112 (1989)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Zahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zahn, JP. (2013). Stellar Tides. In: Souchay, J., Mathis, S., Tokieda, T. (eds) Tides in Astronomy and Astrophysics. Lecture Notes in Physics, vol 861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32961-6_8

Download citation

Publish with us

Policies and ethics