Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 861))

Abstract

The Solar system is the seat of many interactions between the Sun, the planets and their natural satellites. Moreover, since 1995, a large number of extrasolar planetary systems has been discovered where planets orbit around other stars, sometimes very close to them. Therefore, in such systems, tidal interactions are one of the key mechanisms that must be studied to understand the celestial bodies’ dynamics and evolution. Indeed, tides generate displacements and flows in planetary (and in the host star) interiors. The associated kinetic energy is then dissipated into heat because of internal friction processes. This leads to secular evolution of orbits and of spins with characteristic time-scales that are intrinsically related to the properties of dissipative mechanisms, those latters depending both on the internal structure of the studied bodies and on the tidal frequency. This lecture is aimed to review the must advanced theories to study tidal dynamics in planetary systems and the different tidal flows or displacements that can be excited by a perturber, the conversion of their kinetic energy into heat, the related exchanges of angular momentum, and the consequences for systems evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    They are driven by two types of deformation. The first one is those induced by internal dynamical processes such that rotation (through the centrifugal acceleration) and magnetic field (through the volumetric Lorentz force). The second one is the axisymmetric permanent tidal oval shape due to a companion in close binary or multiple systems.

  2. 2.

    The denomination of \(V_{\mathrm{A-B}}\) as a potential is not very pertinent since it has the dimension of the product of a mass by a potential. However, we keep it to stay coherent with [44].

  3. 3.

    Note that each tidal Fourier’s mode have its own dissipation rate as it as been shown by Zahn (1966–1977).

  4. 4.

    The tidal multipole moments of B due to A can be derived using the same methodology and substituting A to B for the perturber and vice-versa.

  5. 5.

    See also the lecture in this volume on stellar tides by J.-P. Zahn.

References

  1. Alexander, M.E.: Astrophys. Space Sci. 23, 459 (1973)

    Article  ADS  Google Scholar 

  2. Andoyer, H.: Mécanique Céleste. Gauthier-Villars, Paris (1926)

    MATH  Google Scholar 

  3. Baraffe, I.: Space Sci. Rev. 116, 67 (2005)

    Article  ADS  Google Scholar 

  4. Barker, A.J., Ogilvie, G.I.: Mon. Not. R. Astron. Soc. 404, 1849 (2010)

    ADS  Google Scholar 

  5. Barker, A.J., Ogilvie, G.I.: Mon. Not. R. Astron. Soc. 417, 745 (2011)

    Article  ADS  Google Scholar 

  6. Biot, M.A.: J. Appl. Geophys. 25, 1385 (1954)

    ADS  MATH  Google Scholar 

  7. Bodenheimer, P., Lin, D.N.C., Mardling, R.A.: Astrophys. J. 548, 466 (2001)

    Article  ADS  Google Scholar 

  8. Borderies, N.: Celest. Mech. 18, 295 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Borderies, N.: Astron. Astrophys. 82, 129 (1980)

    ADS  Google Scholar 

  10. Borderies, N., Yoder, C.F.: Astron. Astrophys. 233, 235 (1990)

    ADS  Google Scholar 

  11. Boué, G., Laskar, J.: Icarus 701, 250 (2009)

    Google Scholar 

  12. Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    Google Scholar 

  13. Brun, A.-S., Toomre, J.: Astrophys. J. 570, 865 (2002)

    Article  ADS  Google Scholar 

  14. Brun, A.-S., Miesch, M.S., Toomre, J.: Astrophys. J. 614, 1073 (2004)

    Article  ADS  Google Scholar 

  15. Bryan, G.H.: Philos. Trans. R. Soc. Lond. A 180, 187 (1889)

    Article  ADS  Google Scholar 

  16. Cébron, D.: Ph.D. thesis. Université de Provence, Aix Marseille I (2011)

    Google Scholar 

  17. Cébron, D., et al.: Phys. Earth Planet. Inter. 182, 119 (2010)

    Article  ADS  Google Scholar 

  18. Cébron, D., Maubert, P., Le Bars, M.: Geophys. J. Int. 182, 1311 (2010)

    Article  ADS  Google Scholar 

  19. Cébron, D., et al.: In: EPJ Web of Conferences, vol. 11, id. 03003 (2011)

    Google Scholar 

  20. Charnoz, S., et al.: Icarus 216, 535 (2011)

    Article  ADS  Google Scholar 

  21. Correia, A.C.M.: Ph.D. thesis. Université Paris VII (2001)

    Google Scholar 

  22. Correia, A.C.M., Laskar, J.: J. Geophys. Res. 108(E11), 9-1 (2003)

    Article  Google Scholar 

  23. Correia, A.C.M., Laskar, J.: Icarus 163, 24 (2003)

    Article  ADS  Google Scholar 

  24. Correia, A.C.M., Laskar, J., de Surgy, O.N.: Icarus 163, 1 (2003)

    Article  ADS  Google Scholar 

  25. Correia, A.C.M., Levrard, B., Laskar, J.: Astron. Astrophys. 488, L63 (2008)

    Article  ADS  MATH  Google Scholar 

  26. Damour, T., Soffel, M.H., Xu, C.: Phys. Rev. D 45, 1017 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  27. Darwin, G.H.: Philos. Trans. R. Soc. Lond. 171, 713 (1880)

    Article  MATH  Google Scholar 

  28. Darwin, G.H.: Philos. Trans. R. Soc. Lond. 172, 491 (1881)

    Article  MATH  Google Scholar 

  29. Dermott, S.F.: Icarus 37, 310 (1979)

    Article  ADS  Google Scholar 

  30. Efroimsky, M.: Astrophys. J. 746, 150 (2012)

    Article  ADS  Google Scholar 

  31. Efroimsky, M., Lainey, V.: J. Geophys. Res. 112, E12003 (2007)

    Article  ADS  Google Scholar 

  32. Efroimsky, M., Williams, J.G.: Celest. Mech. Dyn. Astron. 104, 257 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Eggleton, P.P., Kiseleva, L.G., Hut, P.: Astrophys. J. 499, 853 (1998)

    Article  ADS  Google Scholar 

  34. Ferraz-Mello, S., Rodrìguez, A., Hussmann, H.: Celest. Mech. Dyn. Astron. 101, 171 (2008)

    Article  ADS  MATH  Google Scholar 

  35. Fortney, J.J., Nettelmann, N.: Space Sci. Rev. 152, 423 (2009)

    Article  ADS  Google Scholar 

  36. Gavrilov, S.V., Zharkov, V.N.: Icarus 32, 443 (1977)

    Article  ADS  Google Scholar 

  37. Goldreich, P., Keeley, D.A.: Astrophys. J. 211, 934 (1977)

    Article  ADS  Google Scholar 

  38. Goldreich, P., Nicholson, P.D.: Astrophys. J. 342, 1075 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  39. Goldreich, P., Soter, S.: Icarus 5, 375 (1966)

    Article  ADS  Google Scholar 

  40. Goodman, J., Lackner, C.: Astrophys. J. 696, 2054 (2009)

    Article  ADS  Google Scholar 

  41. Guillot, T.: Planet. Space Sci. 47, 1183 (1999)

    Article  ADS  Google Scholar 

  42. Guillot, T.: Annu. Rev. Earth Planet. Sci. 33, 493 (2005)

    Article  ADS  Google Scholar 

  43. Guimbard, D., et al.: J. Fluid Mech. 660, 240 (2010)

    Article  ADS  MATH  Google Scholar 

  44. Hartmann, T., Soffel, M.H., Kioustelidis, T.: Celest. Mech. Dyn. Astron. 60, 139 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Henning, W.G., O’Connell, R.J., Sasselov, D.D.: Astrophys. J. 707, 1000 (2009)

    Article  ADS  Google Scholar 

  46. Herreman, W., Le Bars, M., Le Gal, P.: Phys. Fluids 21, 046602 (2009) (9 pp.)

    Article  ADS  Google Scholar 

  47. Hubbard, W.B., Dougherty, M.K., Gautier, D., Jacobson, R.: In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (eds.) Saturn from Cassini-Huygens, ISBN 978-1-4020-9216-9, p. 75. Springer, Berlin (2009).

    Chapter  Google Scholar 

  48. Hut, P.: Astron. Astrophys. 99, 126 (1981)

    ADS  MATH  Google Scholar 

  49. Ilk, K.H.: Ph.D. thesis. Technischen Universitaet, Munich Bayerische Akademie der Wissenschaften (1983)

    Google Scholar 

  50. Ivanov, P.B., Papaloizou, J.C.B.: Mon. Not. R. Astron. Soc. 353, 1161 (2004)

    Article  ADS  Google Scholar 

  51. Ivanov, P.B., Papaloizou, J.C.B.: Mon. Not. R. Astron. Soc. 407, 1609 (2010)

    Article  ADS  Google Scholar 

  52. Kaula, W.M.: Astron. J. 67, 300 (1962)

    Article  ADS  Google Scholar 

  53. Kaula, W.M.: Rev. Geophys. Space Phys. 2, 661 (1964)

    Article  ADS  Google Scholar 

  54. Kelvin, Lord: The Tides Evening Lecture to the British Association at the Southampton Meeting, Friday, August 25th, 1882. Scientific Papers. The Harvard Classics, New York (1882)

    Google Scholar 

  55. Kerswell, R.: Annu. Rev. Fluid Mech. 34, 83 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  56. Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution. Springer, Berlin–Heidelberg–New York (1990)

    Book  MATH  Google Scholar 

  57. Lacaze, L., Le Gal, P., le Dizès, S.: J. Fluid Mech. 505, 22 (2004)

    Article  Google Scholar 

  58. Lacaze, L., Le Gal, P., le Dizès, S.: Phys. Earth Planet. Inter. 151, 194 (2005)

    Article  ADS  Google Scholar 

  59. Lacaze, L., et al.: Geophys. Astrophys. Fluid Dyn. 100, 299 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Lainey, V., Arlot, J.-E., Karatekin, Ö., van Hoolst, T.: Nature 459, 957 (2009)

    Article  ADS  Google Scholar 

  61. Lainey, V., et al.: Nature 14, 752 (2012)

    Google Scholar 

  62. Lambeck, K.: The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press, Cambridge (1980)

    Book  Google Scholar 

  63. Laskar, J.: Celest. Mech. Dyn. Astron. 91, 351 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Lavorel, G., Le Bars, M.: Phys. Fluids 22, 114101 (2010) (8 pp.)

    Article  ADS  Google Scholar 

  65. Le Bars, M., Le Dizès, S.: J. Fluid Mech. 563, 189 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Le Bars, M., Le Dizès, S., Le Gal, P.: J. Fluid Mech. 585, 323 (2007)

    Article  ADS  MATH  Google Scholar 

  67. Le Bars, M., et al.: Phys. Earth Planet. Inter. 178, 48 (2010)

    Article  ADS  Google Scholar 

  68. Leconte, J., Chabrier, G., Baraffe, I., Levrard, B.: Astron. Astrophys. 516, A64 (2010).

    Article  ADS  Google Scholar 

  69. Levrard, B., Winisdoerffer, C., Chabrier, G.: Astrophys. J. 692, L9 (2009)

    Article  ADS  Google Scholar 

  70. Love, A.E.H.: Some Problems of Geodynamics. Cambridge University Press, Cambridge (1911)

    MATH  Google Scholar 

  71. MacDonald, G.J.F.: Rev. Geophys. Space Phys. 2, 467 (1964)

    Article  ADS  Google Scholar 

  72. Maciejewski, A.J.: Celest. Mech. Dyn. Astron. 63, 1 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. Mardling, R.A., Lin, D.N.C.: Astrophys. J. 573, 829 (2002)

    Article  ADS  Google Scholar 

  74. Mathis, S.: Astron. Astrophys. 506, 811 (2009)

    Article  ADS  MATH  Google Scholar 

  75. Mathis, S., de Brye, N.: Astron. Astrophys. 526, A65 (2011).

    Article  ADS  Google Scholar 

  76. Mathis, S., de Brye, N.: Astron. Astrophys. 540, A37 (2012)

    Article  ADS  Google Scholar 

  77. Mathis, S., Le Poncin-Lafitte, C.: Astron. Astrophys. 497, 889 (2009)

    Article  ADS  MATH  Google Scholar 

  78. Mathis, S., Talon, S., Pantillon, F.-P., Zahn, J.-P.: Sol. Phys. 251, 101 (2008)

    Article  ADS  Google Scholar 

  79. Melchior, P.: The Earth Tides. Pergamon, New York (1966)

    Google Scholar 

  80. Melchior, P.: Physique et Dynamique Planétaire. Vander, Bruxelles (1971)

    Google Scholar 

  81. Neron de Surgy, O., Laskar, J.: Astron. Astrophys. 318, 975 (1997)

    ADS  Google Scholar 

  82. Ogilvie, G.I.: J. Fluid Mech. 543, 19 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. Ogilvie, G.I.: Mon. Not. R. Astron. Soc. 396, 794 (2009)

    Article  ADS  Google Scholar 

  84. Ogilvie, G.I., Lin, D.N.C.: Astrophys. J. 610, 477 (2004)

    Article  ADS  Google Scholar 

  85. Ogilvie, G.I., Lin, D.N.C.: Astrophys. J. 661, 1180 (2007)

    Article  ADS  Google Scholar 

  86. Papaloizou, J.C.B., Ivanov, P.B.: Mon. Not. R. Astron. Soc. 364, L66 (2005)

    ADS  Google Scholar 

  87. Papaloizou, J.C.B., Ivanov, P.B.: Mon. Not. R. Astron. Soc. 407, 1631 (2010)

    Article  ADS  Google Scholar 

  88. Papaloizou, J.C.B., Savonije, G.J.: Mon. Not. R. Astron. Soc. 291, 651 (1997)

    ADS  Google Scholar 

  89. Peale, S.J., Cassen, P.: Icarus 36, 245 (1978)

    Article  ADS  Google Scholar 

  90. Penev, K., Sasselov, D.: Astrophys. J. 731, 67 (2011)

    Article  ADS  Google Scholar 

  91. Penev, K., Barranco, J., Sasselov, D.: Astrophys. J. 705, 285 (2009)

    Article  ADS  Google Scholar 

  92. Penev, K., Sasselov, D., Robinson, F., Demarque, P.: Astrophys. J. 704, 230 (2009)

    Article  ADS  Google Scholar 

  93. Remus, F., Mathis, S., Zahn, J.-P., Lainey, V.: Astron. Astrophys. 541, A165 (2012).

    Article  ADS  Google Scholar 

  94. Remus, F., Mathis, S., Zahn, J.-P.: Astron. Astrophys. 544, A132 (2012)

    Article  ADS  Google Scholar 

  95. Rieutord, M.: Astron. Astrophys. 259, 581 (1992)

    ADS  Google Scholar 

  96. Rieutord, M., Valdettaro, L.: J. Fluid Mech. 341, 77 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. Rieutord, M., Valdettaro, L.: J. Fluid Mech. 643, 363 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  98. Rieutord, M., Zahn, J.-P.: Astrophys. J. 474, 760 (1997)

    Article  ADS  Google Scholar 

  99. Rieutord, M., Valdettaro, L., Georgeot, B.: J. Fluid Mech. 435, 103 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  100. Rieutord, M., Valdettaro, L., Georgeot, B.: J. Fluid Mech. 463, 345 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  101. Rocca, A.: Astron. Astrophys. 111, 252 (1982)

    ADS  Google Scholar 

  102. Rocca, A.: Astron. Astrophys. 175, 81 (1987)

    ADS  MATH  Google Scholar 

  103. Rocca, A.: Astron. Astrophys. 213, 114 (1989)

    ADS  Google Scholar 

  104. Roxburgh, I.W.: Astron. Astrophys. 377, 688 (2001)

    Article  ADS  Google Scholar 

  105. Santos, N.C., et al.: Our non-stable Universe. In: JENAM-2007 (2007)

    Google Scholar 

  106. Savonije, G.-J.: EAS Publ. Ser. 29, 91 (2008)

    Article  Google Scholar 

  107. Savonije, G.J., Papaloizou, J.C.B.: Mon. Not. R. Astron. Soc. 291, 633 (1997)

    ADS  Google Scholar 

  108. Savonije, G.J., Witte, M.G.: Astron. Astrophys. 386, 211 (2002)

    Article  ADS  Google Scholar 

  109. Savonije, G.J., Papaloizou, J.C.B., Alberts, F.: Mon. Not. R. Astron. Soc. 277, 471 (1995)

    ADS  Google Scholar 

  110. Scharlemann, E.T.: Astrophys. J. 246, 292 (1981)

    Article  ADS  Google Scholar 

  111. Tassoul, M., Tassoul, J.-L.: Astrophys. J. 395, 259 (1992)

    Article  ADS  Google Scholar 

  112. Tassoul, M., Tassoul, J.-L.: Astrophys. J. 395, 604 (1992)

    Article  ADS  Google Scholar 

  113. Tassoul, M., Tassoul, J.-L.: Astrophys. J. 481, 363 (1997)

    Article  ADS  Google Scholar 

  114. Tisserand, F.F.: Traité de Mécanique Céleste, Tome I. Gauthier-Villars, Paris (1889)

    Google Scholar 

  115. Tisserand, F.F.: Traité de Mécanique Céleste, Tome II. Gauthier-Villars, Paris (1891)

    Google Scholar 

  116. Tobie, G.: Impact du chauffage de marée sur l’évolution géodynamique d’Europe et de Titan. Ph.D. thesis. Université Paris 7 - Denis Diderot (2003)

    Google Scholar 

  117. Tobie, G., Mocquet, A., Sotin, C.: Icarus 177, 534 (2005)

    Article  ADS  Google Scholar 

  118. Waleffe, F.A.: Phys. Fluids 2, 76 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  119. Weinberg, N.N., Arras, P., Quataert, E., Burkart, J.: Astrophys. J. 751, article id. 136 (2012)

    Article  ADS  Google Scholar 

  120. Witte, M.G., Savonije, G.J.: Astron. Astrophys. 341, 842 (1999)

    ADS  Google Scholar 

  121. Witte, M.G., Savonije, G.J.: Astron. Astrophys. 350, 129 (1999)

    ADS  Google Scholar 

  122. Witte, M.G., Savonije, G.J.: Astron. Astrophys. 366, 840 (2001)

    Article  ADS  Google Scholar 

  123. Witte, M.G., Savonije, G.J.: Astron. Astrophys. 386, 222 (2002)

    Article  ADS  Google Scholar 

  124. Wu, Y.: Astrophys. J. 635, 674 (2005)

    Article  ADS  Google Scholar 

  125. Wu, Y.: Astrophys. J. 635, 688 (2005)

    Article  ADS  Google Scholar 

  126. Zahn, J.-P.: Ann. Astrophys. 29, 313 (1966)

    ADS  Google Scholar 

  127. Zahn, J.-P.: Ann. Astrophys. 29, 489 (1966)

    ADS  Google Scholar 

  128. Zahn, J.-P.: Ann. Astrophys. 29, 565 (1966)

    ADS  Google Scholar 

  129. Zahn, J.-P.: Astron. Astrophys. 41, 329 (1975)

    ADS  Google Scholar 

  130. Zahn, J.-P.: Astron. Astrophys. 57, 383 (1977)

    ADS  Google Scholar 

  131. Zahn, J.-P.: Astron. Astrophys. 220, 112 (1989)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the CNRS/INSU for the support given to this Thematic School. This work was supported in part by the Programme National de Planétologie (CNRS/INSU), the Programme National de Physique Stellaire (CNRS/INSU), the EMERGENCE-UPMC project EME0911, and the CNRS Physique théorique et ses interfaces program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Mathis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mathis, S., Le Poncin-Lafitte, C., Remus, F. (2013). Tides in Planetary Systems. In: Souchay, J., Mathis, S., Tokieda, T. (eds) Tides in Astronomy and Astrophysics. Lecture Notes in Physics, vol 861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32961-6_7

Download citation

Publish with us

Policies and ethics