Advertisement

Oceanic Tides

  • Bernard SimonEmail author
  • Anne Lemaitre
  • Jean Souchay
Part of the Lecture Notes in Physics book series (LNP, volume 861)

Abstract

The phenomena of tides are a matter of common experience: ocean tides under the influence of the Moon and the Sun, differences of the surface level of the oceans reaching several meters, following well-established cycles. In the present chapter we propose a first step in the general and classical mathematical formulations of the tidal potential and tidal force. Then we apply this formulation to the concrete case of the lunisolar ocean tides at a given point of the surface of the sea. At the end we give a review of various tidal manifestations all around the world.

Keywords

Tidal Range Tidal Wave Tidal Force Diurnal Tide Amphidromic Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Airy, G.B.: Tides and waves. In: Rose, H.J. et al. (eds.) Encyclopaedia Metropolitana. Mixed Sciences, vol. 3, pp. 1817–1845 (1841) Google Scholar
  2. 2.
    Airy, G.B.: Tides and waves. In: Encyclopedia Metropolitana, vol. 5, pp. 241–396. London (1845) Google Scholar
  3. 3.
    Brown, E.W.: Tables of the Morion of the Moon. Yale University Press, New Haven (1919) Google Scholar
  4. 4.
    Chazallon, M.: Annuaire des marées des cotes de France. Dépot des Cartes et Plans, Paris (1839) Google Scholar
  5. 5.
    Darwin, G.H.: Report on the harmonic analysis of tidal observations. Brit. Assoc. Rep, pp. 49–117 (1883) Google Scholar
  6. 6.
    Darwin, G.W.: On the figure of equilibrium of a planet of heterogeneous density. Proc. R. Soc. Lond. 1(36), 158–166 (1883) Google Scholar
  7. 7.
    Darwin, G.: On tidal prediction. Proc. R. Soc. Lond. 49, 130–133 (1890) CrossRefGoogle Scholar
  8. 8.
    Darwin, G.H.: The harmonic analysis of tidal observations. In: Scientific Papers, vol. 1, pp. 1–70. Cambridge University Press, Cambridge (1907) Google Scholar
  9. 9.
    Doodson, A.T.: Harmonic development of the tide-generating potential. Proc. R. Soc. Lond. Ser. A 100, 305–329 (1921) ADSCrossRefGoogle Scholar
  10. 10.
    Hansen, W.: The Reproduction of the Motion in the Sea by Means of Hydrodynamical Numerical Methods. Pub. N5, pp. 1–57. Mitteilung Inst. Meereskunde, Univ. Hamburg, Hamburg (1966) Google Scholar
  11. 11.
    Hartmann, T., Wenzel, H.G.: The HW95 tidal potential catalogue. Geophys. Res. Lett. 22(24), 3553–3556 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    Laplace, P.S.: Mémoire sur le flux et le reflux de la mer. Mém. Acad. Sci., pp. 45–181 (1790) Google Scholar
  13. 13.
    Laplace, P.S.: Traité de mécanique céleste, vol. 2, livre 4 (1799); vol. 5, livre 13 (1825) Google Scholar
  14. 14.
    Le Provost, C., Genco, M.L., Lyard, F., Canceil, P.: Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J. Geophys. Res. 99(C12), 24777–24797 (1994) ADSCrossRefGoogle Scholar
  15. 15.
    Lubbock, J.W.: On the tides. Philos. Trans. R. Soc. Lond. 127, 97–104 (1837) CrossRefGoogle Scholar
  16. 16.
    Marchuk, G.I., Kagan, B.A.: Dynamics of Ocean Tides. Kluwer, Dordrecht (1989), 327 pp CrossRefGoogle Scholar
  17. 17.
    Mazzega, P.: The M2 ocean tide recovered from seasat altimetry in the Indian ocean. Nature 302, 514–516 (1983) ADSCrossRefGoogle Scholar
  18. 18.
    Melchior, P.: The Tides of the Planet Earth, 2nd edn. Pergamon, Elmsford (1982), 641 pp Google Scholar
  19. 19.
    Munk, W.H., Cartwright, D.E.: Tidal spectroscopy and prediction. Philos. Trans. R. Soc. Lond. A 259, 533–581 (1966) ADSCrossRefGoogle Scholar
  20. 20.
    Munk, W.H., MacDonald, G.J.F.: The Rotation of the Earth—A Geophysical Discussion. Cambridge University Press, Cambridge (1960), 323 pp Google Scholar
  21. 21.
    Newton, S.I.: Principia. University of California Press, Berkeley (1687) Google Scholar
  22. 22.
    Schuremann, P.: Manual of harmonic analysis and prediction of tides (1971); U.S. Coast and Geodetic Survey (1971) Google Scholar
  23. 23.
    Thomson, W.: On gravitational oscillations of rotating water. Proc. R. Soc. Edinb. 10, 92–100 (1879) zbMATHGoogle Scholar
  24. 24.
    Whewell, W.: Researches on the Tides, 14th series. On the Results of Continued Tide Observations at Several Places on the British Coasts, pp. 227–233 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.PloudalmézeauFrance
  2. 2.naXysUniversity of NamurNamurBelgium
  3. 3.SYRTE, UMR8630 CNRSObservatoire de ParisParisFrance

Personalised recommendations