Skip to main content

Vibrational Energy Transfer at Surfaces: The Importance of Non-Adiabatic Electronic Effects

  • Chapter
  • First Online:
Dynamics of Gas-Surface Interactions

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 50))

Abstract

Here we review experimental and theoretical work on vibrational energy transfer in collisions of molecules with surfaces. We focus on metal surfaces and on the role of non-adiabatic electronic transitions in these collisions. Non-adiabatic electronic transitions contribute to vibrational excitation via the decay of thermally excited electron–hole pairs; conversely, vibrational relaxation can effectively couple vibrational excitation to the production of excited electron–hole pairs. In the case of low work function surfaces, the hot electrons can be observed directly as Vibrationally Promoted Electron Emission (VPPE). The energy distributions of VPEE, and comparison of results on vibrational excitation and relaxation to kinetic models and to ab initio theories all indicate that the non-adiabatic coupling is strong and cannot be properly described by perturbative, weak coupling description. A recently developed model based on ab initio potentials and non-adiabatic couplings and on the Independent Electron Surface Hoping (IESH) model is quite successful in describing both vibrational excitation and relaxation for NO collisions with Au(111) within the same theoretical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Born, R. Oppenheimer, Annalen. Der. Physik. 84(20), 457–484 (1927)

    Article  ADS  MATH  Google Scholar 

  2. J.A. Barker, D.J. Auerbach, Gas-Surface Interactions and Dynamics; Thermal Energy Atomic and Molecular Beam Studies. Surface Science Reports, vol. 4 (North-Holland, Amsterdam, 1985), pp. 1–99.

    Google Scholar 

  3. R.B. Gerber, A. Amirav, J. Phys. Chem. 90(19), 4483–4491 (1986)

    Google Scholar 

  4. S.T. Ceyer, Ann. Rev. Phys. Chem. 39, 479–510 (1988)

    Article  ADS  Google Scholar 

  5. C.R. Arumainayagam, R.J. Madix, Prog. Surf. Sci. 38(1), 1–102 (1991)

    Article  ADS  Google Scholar 

  6. G. Ertl, E. Hasselbrink, Mol. Phys. 76(4), 777–786 (1992)

    Article  ADS  Google Scholar 

  7. R.E. Palmer, Prog. Surf. Sci. 41(1), 51–108 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  8. I. Harrison, Acc. Chem. Res. 31(10), 631–639 (1998)

    Article  Google Scholar 

  9. J.C. Tully, Ann. Rev. Phys. Chem. 51, 153–178 (2000)

    Article  ADS  Google Scholar 

  10. G. Ertl, Dynamics of reactions at surfaces, in Advances in Catalysis, vol. 45 (San Diego, Academic Press, 2000). pp. 1–69

    Google Scholar 

  11. B. Gumhalter, Phys. Rep. Rev. Sect. Phys. Lett. 351(1–2), 1–159 (2001)

    Google Scholar 

  12. H. Petek, S. Ogawa, Ann. Rev. Phys. Chem. 53, 507–531 (2002)

    Article  ADS  Google Scholar 

  13. K.W. Kolasinski, Curr. Opin. Solid State Mater. Sci. 8(5), 353–366 (2004)

    Article  ADS  Google Scholar 

  14. E. Hasselbrink, Curr. Opin. Solid State Mater. Sci. 10(3–4), 192–204 (2006)

    Article  ADS  Google Scholar 

  15. C.D. Lindstrom, X.Y. Zhu, Chem. Rev. 106(10), 4281–4300 (2006)

    Article  Google Scholar 

  16. L.D. Landau, Phys. Z. Sowjetunion. 2, 46 (1932)

    Google Scholar 

  17. C. Zener, Proc. R. Soc. London Ser. AB. 7, 696 (1932)

    Article  ADS  Google Scholar 

  18. E.C.G. Stückelberg, Helv. Phys. Acta. 5, 332 (1932)

    Google Scholar 

  19. E.E. Nikitin, Ann. Rev. Phys. Chem. 50(1), 1–21 (1999)

    Article  ADS  Google Scholar 

  20. H.S.W. Massey, Rep. Prog. Phys. 12, 248–269 (1949)

    Article  ADS  Google Scholar 

  21. Massey used the length over which the interaction strength decayed to 1/pi times its maximum value

    Google Scholar 

  22. B. Kasemo, Phys. Rev. Lett. 32(20), 1114–1117 (1974)

    Article  ADS  Google Scholar 

  23. G.C. Allen, et al., Surf. Sci. 102(1), 207–226 (1981)

    Article  ADS  Google Scholar 

  24. R.H. Prince, R.M. Lambert, J.S. Foord, Surf. Sci. 107(2–3), 605–624 (1981)

    Article  ADS  Google Scholar 

  25. J.J. Thomson, Philos. Mag. 10, 584 (1905)

    Google Scholar 

  26. J. Kramer, Zeitschrift Fur Physik. 125(11–1), 739–756 (1949)

    Article  ADS  Google Scholar 

  27. T.F. Gesell, E.T. Arakawa, T.A. Callcott, Surf. Sci. 20(1), 174–178 (1970)

    Article  ADS  Google Scholar 

  28. T. Greber, Surf. Sci. Rep. 28(1–2), 1–6464 (1997)

    Article  ADS  Google Scholar 

  29. H. Nienhaus, Surf. Sci. Rep. 45(1–2), 3–78 (2002)

    ADS  Google Scholar 

  30. J.K. Norskov, D.M. Newns, B.I. Lundqvist, Surf. Sci. 80(1), 179–188 (1979)

    Article  ADS  Google Scholar 

  31. B. Kasemo, et al., Surf. Sci. 89(1–3), 554–565 (1979)

    Article  ADS  Google Scholar 

  32. J.K. Norskov, B.I. Lundqvist, Surf. Sci. 89(1–3), 251–261 (1979)

    Article  ADS  Google Scholar 

  33. K. Schonhammer, O. Gunnarsson, Phys. Rev. B. 24(12), 7084–7092 (1981)

    Article  ADS  Google Scholar 

  34. G.P. Brivio, T.B. Grimley, Surf. Sci. 131(2–3), 475–490 (1983)

    Article  ADS  Google Scholar 

  35. G.P. Brivio, T.B. Grimley, Surf. Sci. 161(2–3), L573–L577 (1985)

    Article  ADS  Google Scholar 

  36. B. Gergen, et al., Science 294(5551), 2521–2523 (2001)

    Article  ADS  Google Scholar 

  37. J.Y. Park, G.A. Somorjai, Chemphyschem 7(7), 1409–1413 (2006)

    Article  Google Scholar 

  38. B. Mildner, E. Hasselbrink, D. Diesing, Chem. Phys. Lett. 432(1–3), 133–138 (2006)

    Article  ADS  Google Scholar 

  39. Y.J. Chabal, Surf Sci. Rep. 8(5–7), 211–357 (1988)

    Article  ADS  Google Scholar 

  40. H.C. Chang, G.E. Ewing, Phys. Rev. Lett. 65(17), 2125–2128 (1990)

    Article  ADS  Google Scholar 

  41. G.E Ewing, Acc. Chem. Res. 25(7), 292–299 (1992)

    Google Scholar 

  42. S.A. Corcelli, J.C. Tully, J. Phys. Chem. A 106(45), 10849–10860 (2002)

    Google Scholar 

  43. S.A. Corcelli, J.C. Tully, J. Chem. Phys. 116(18), 8079–8092 (2002)

    Google Scholar 

  44. M. Morin, N.J. Levinos, A.L. Harris, J. Chem. Phys. 96(5), 3950–3956 (1992)

    Google Scholar 

  45. V. Krishna, J.C. Tully, J. Chem. Phys. 125(5) (2006)

    Google Scholar 

  46. M. Head-Gordon, J.C. Tully, Phys. Rev. B 46(3), 1853–1856 (1992)

    Article  ADS  Google Scholar 

  47. M. Head-Gordon, J.C. Tully, J. Chem. Phys. 96(5), 3939–3949 (1992)

    Google Scholar 

  48. J.E. Hurst, et al., Phys. Rev. Lett. 43(16), 1175–1177 (1979)

    Article  ADS  Google Scholar 

  49. B.D. Kay, T.D. Raymond, M.E. Coltrin, Phys. Rev. Lett. 59(24), 2792–2794 (1987)

    Article  ADS  Google Scholar 

  50. C.T. Rettner, et al., Phys. Rev. Lett. 55(18), 1904–1907 (1985)

    Article  ADS  Google Scholar 

  51. C.T. Rettner, et al., Surf. Sci. 192(1), 107–130 (1987)

    Article  Google Scholar 

  52. E.K. Watts, J.L.W. Siders, G.O. Sitz, Surf. Sci. 374(1–3), 191–196 (1997)

    Article  ADS  Google Scholar 

  53. Y. Huang, et al., Phys. Rev. Lett. 84(13), 2985–2988 (2000)

    Article  ADS  Google Scholar 

  54. A.M. Wodtke, Y.H. Huang, D.J. Auerbach, Chem. Phys. Lett. 364(3–4), 231–236 (2002)

    Article  ADS  Google Scholar 

  55. R. Cooper, et al., Chem. Sci. 1(1), 55–61 (2010)

    Article  Google Scholar 

  56. D.M. Newns, Surf. Sci. 171(3), 600–614 (1986)

    Article  ADS  Google Scholar 

  57. G.A. Gates, G.R. Darling, S. Holloway, J. Chem. Phys. 101(7), 6281–6288 (1994)

    Google Scholar 

  58. G.A. Gates, S. Holloway, Surf. Sci. 309, 132–137 (1994)

    Article  Google Scholar 

  59. A. Gross, W. Brenig, Surf. Sci. 289(3), 335–339 (1993)

    Article  ADS  Google Scholar 

  60. G.J. Kroes, Prog. Surf. Sci. 60(1–4), 1–85 (1999)

    Article  ADS  Google Scholar 

  61. G.J. Kroes, et al., Acc. Chem. Res. 35(3), 193–200 (2002)

    Article  Google Scholar 

  62. P. Nieto, et al., Science 312(5770), 86–89 (2006)

    Article  ADS  Google Scholar 

  63. C. Díaz, et al., Science 326(5954), 832–834 (2009)

    Article  ADS  Google Scholar 

  64. A.C. Luntz, M. Persson, G.O. Sitz, J. Chem. Phys. 124(9) (2006)

    Google Scholar 

  65. G.J. Kroes, et al., Proc. Natl. Acad. Sci. USA. 107(49), 20881–20886 (2010)

    Article  ADS  Google Scholar 

  66. Q. Ran, et al., Nucl. Instrum. Methods Phys. Res. B-Beam Interact. Mater. Atoms 258(1), 1–6 (2007)

    Google Scholar 

  67. Q. Ran, et al., Rev. Sci. Instrum. 78, 104104 (2007)

    Article  ADS  Google Scholar 

  68. Q. Ran, et al., Phys. Rev. Lett. 98(23), (2007)

    Google Scholar 

  69. I. Rahinov, et al., Phys. Chem. Chem. Phys. 13(28), 12680–12692 (2011)

    Article  Google Scholar 

  70. C.E. Hamilton, J.L. Kinsey, R.W. Field, Ann. Rev. Phys. Chem. 37, 493–524 (1986)

    Article  ADS  Google Scholar 

  71. C. Kittrell, et al., J. Chem. Phys. 75(5), 2056–2059 (1981)

    Article  ADS  Google Scholar 

  72. M. Silva, et al., Ann. Rev. Phys. Chem. 52, 811–852 (2001)

    Article  ADS  Google Scholar 

  73. Y. Huang, et al., Science 290(5489), 111–114 (2000)

    Article  ADS  Google Scholar 

  74. A.M. Wodtke, Y.H. Huang, D.J. Auerbach, J. Chem. Phys. 118(17), 8033–8041 (2003)

    Google Scholar 

  75. J.D. White, et al., J. Chem. Phys. 124(6), 064702 (2006)

    Article  ADS  Google Scholar 

  76. B. Hellsing, M. Persson, B.I. Lundqvist, Surf. Sci. 126(1–3), 147–153 (1983)

    Article  ADS  Google Scholar 

  77. M. Head-Gordon, J.C. Tully, J. Chem. Phys. 103(23), 10137–10145 (1995)

    Google Scholar 

  78. S. Monturet, P. Saalfrank, Phys. Rev. B 82(7), 075404 (2010)

    Article  ADS  Google Scholar 

  79. N. Shenvi, S. Roy, J.C. Tully, Science 326(5954), 829–832 (2009)

    Article  ADS  Google Scholar 

  80. N. Shenvi, S. Roy, J.C. Tully, J Chem. Phys. 130(17) (2009)

    Google Scholar 

  81. J.D. White, et al., Nature 433(7025), 503–505 (2005)

    Article  ADS  Google Scholar 

  82. J.D. White, et al., J. Vacuum Sci. Technol. A 23(4), 1085–1089 (2005)

    Article  ADS  Google Scholar 

  83. J.L. LaRue, et al., J. Chem. Phys. 129(2), 024709–024706 (2008)

    Article  ADS  Google Scholar 

  84. A. Böttcher, et al., Chem. Phys. Lett. 231(1), 119–122 (1994)

    Article  ADS  Google Scholar 

  85. T. Greber, et al., Surf. Rev. Lett. 2(3), 273–277 (1995)

    Article  Google Scholar 

  86. N.H. Nahler, et al., Science 321(5893), 1191–1194 (2008)

    Article  ADS  Google Scholar 

  87. J. LaRue, et al., Phys. Chem. Chem. Phys. 13(1), 97–99 (2011)

    Article  ADS  Google Scholar 

  88. J.L. LaRue, et al., J. Phys. Chem. A. 115(50), 14306–14314 (2011)

    Article  Google Scholar 

  89. D. Matsiev, et al., Phys. Chem. Chem. Phys. 13(18), 8153–8162 (2011)

    Article  Google Scholar 

  90. R. Cooper, et al., Ang. Chemie (2012)

    Google Scholar 

  91. C.T. Rettner, D.J. Auerbach, H.A. Michelsen, Phys. Rev. Lett. 68(16), 2547–2550 (1992)

    Article  ADS  Google Scholar 

  92. A.M. Wodtke, D. Matsiev, D.J. Auerbach, Prog. Surf. Sci. 83(3), 167–214 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Alexander von Humboldt Foundation for support for this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Auerbach, D.J., Wodtke, A.M. (2013). Vibrational Energy Transfer at Surfaces: The Importance of Non-Adiabatic Electronic Effects. In: Díez Muiño, R., Busnengo, H. (eds) Dynamics of Gas-Surface Interactions. Springer Series in Surface Sciences, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32955-5_11

Download citation

Publish with us

Policies and ethics