Skip to main content

Information Dynamics in Networks and Phase Transitions

  • Chapter
  • First Online:
The Local Information Dynamics of Distributed Computation in Complex Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 824 Accesses

Abstract

As outlined in Sect. 2.4 the topology of networks has attracted much recent attention, however their time-series dynamics remains relatively poorly understood. In particular, the importance of quantitatively establishing the nature of distributed computation in networks is widely acknowledged, e.g. Mitchell [2] states “the main challenge is understanding the dynamics of the propagation of information ... in networks, and how these networks process such information.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is commonly observed in such ensemble studies [17, 19].

  2. 2.

    See also the see sharpening of phase transition with system size for RBNs in [7, 20] and for another network type in [3].

  3. 3.

    Our information dynamics analysis of RBNs was first reported in [21], and the analysis of cascading failures first reported in [22].

  4. 4.

    This is unlike the mutual information measurements by Ribeiro et al. [7] and Solé and Valverde [3] for random node pairs (regardless of whether they are directly causally linked).

  5. 5.

    In contrast, this could be done for the homogeneous agents in CAs in the preceding chapters.

  6. 6.

    \(\delta \) was confirmed to change sign close to \(\overline{K} = 2\) here (as per [20]), with a subsequent slow increase after \(\overline{K} = 2\) (known to be a finite-\(N\) effect). The standard deviation of \(\delta \) is maximised during this increase in the chaotic regime [20]. Certain other measures suggested to indicate the critical phase are known to be shifted into the chaotic regime for finite-\(N\), e.g. [7]. Given impetus as an indicator of the critical phase by the related measure of Rämö et al. [6], we use the standard deviation of \(\delta \) as guide to the relative regions of dynamics in finite-\(N\) networks.

  7. 7.

    We have slightly altered the definition in [26], since this definition was ambiguous.

  8. 8.

    It could also be said that there is a large amount of assortative noise between the source and destination [3, 44].

  9. 9.

    We have since made this exploration of small-world Boolean networks in [49].

  10. 10.

    Note however that applying the framework to acyclic or feed-forward models such as [29, 45, 54, 55] (which are widely available since they are much simpler to infer) will reveal little more than trivial computation. This is because in the absence of external stimuli, acyclic models reach an attractor state very quickly, and the computation of the network is then completed.

References

  1. M. Mitchell, Complexity: A Guided Tour (Oxford University Press, New York, 2009)

    Google Scholar 

  2. M. Mitchell, Complex systems: network thinking. Artif. Intell. 170(18), 1194–1212 (2006)

    Google Scholar 

  3. R.V. Solé, S. Valverde, Information transfer and phase transitions in a model of internet traffic. Physica A 289(3–4), 595–605 (2001)

    Article  MATH  Google Scholar 

  4. R.V. Solé, S. Valverde, Information theory of complex networks: on evolution and architectural constraints, in Complex Networks, ed. by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai. Lecture Notes in Physics, vol. 650 (Springer, Berlin, 2004), pp. 189–207

    Google Scholar 

  5. O. Kinouchi, M. Copelli, Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2(5), 348–351 (2006)

    Article  Google Scholar 

  6. P. Rämö, S. Kauffman, J. Kesseli, O. Yli-Harja, Measures for information propagation in Boolean networks. Physica D 227(1), 100–104 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.S. Ribeiro, S.A. Kauffman, J. Lloyd-Price, B. Samuelsson, J.E.S. Socolar, Mutual information in random Boolean models of regulatory networks. Phys. Rev. E 77(1), 011901 (2008)

    Article  MathSciNet  Google Scholar 

  8. V. Latora, M. Marchiori, Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Article  Google Scholar 

  9. D. Polani, O. Sporns, M. Lungarella, How information and embodiment shape intelligent information processing, in Proceedings of the 50th Anniversary Summit of Artificial Intelligence, New York, ed. by M. Lungarella, F. Iida, J. Bongard, R. Pfeifer. ser. Lecture Notes in Computer Science, vol. 4850 (Springer, Berlin, 2007), pp. 99–111

    Google Scholar 

  10. C. Gershenson, Introduction to random Boolean networks, in Proceedings of the Workshops and Tutorials of the Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife IX), Boston, USA, ed. by M. Bedau, P. Husbands, T. Hutton, S. Kumar, H. Suzuki, 2004, pp. 160–173

    Google Scholar 

  11. P. Fernández, R.V. Solé, The role of computation in complex regulatory networks, in Scale-Free Networks and Genome Biology, ed. by E.V. Koonin, Y.I. Wolf, G.P. Karev (Landes Bioscience, Georgetown, 2006), pp. 206–225

    Google Scholar 

  12. C.G. Langton, Computation at the edge of chaos: phase transitions and emergent computation. Phys. D 42(1–3), 12–37 (1990)

    Google Scholar 

  13. S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, New York, 1993)

    Google Scholar 

  14. O. Miramontes, Order-disorder transitions in the behavior of ant societies. Complexity 1(3), 56–60 (1995)

    MathSciNet  Google Scholar 

  15. D. Coffey, Self-organization, complexity and chaos: the new biology for medicine. Nat. Med. 4(8), 882–5 (1998)

    Article  Google Scholar 

  16. M. Mitchell, P.T. Hraber, J.P. Crutchfield, Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst. 7, 89–130 (1993)

    MATH  Google Scholar 

  17. D.P. Feldman, C.S. McTague, J.P. Crutchfield, The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. Chaos 18(4), 043106 (2008)

    Google Scholar 

  18. C. Gershenson, Updating schemes in random Boolean networks: do they really matter? in Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife IX), Boston, USA, ed. by J. Pollack, M. Bedau, P. Husbands, T. Ikegami, R.A. Watson (MIT Press, Cambridge, 2004), pp. 238–243

    Google Scholar 

  19. M. Mitchell, J. P. Crutchfield, and P. T. Hraber, Dynamics, computation, and the edge of chaos: a re-examination, in Complexity: Metaphors, Models, and Reality, ed. by G. Cowan, D. Pines, D. Melzner. Santa Fe Institute Studies in the Sciences of Complexity, vol. 19 (Addison-Wesley, Reading, 1994), pp. 497–513

    Google Scholar 

  20. C. Gershenson, Phase transitions in random Boolean networks with different updating schemes. arXiv:nlin/0311008v1 (2004), http://arxiv.org/abs/nlin/0311008

  21. J.T. Lizier, M. Prokopenko, A.Y. Zomaya, The information dynamics of phase transitions in random Boolean networks, in Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems (ALife XI), Winchester, UK, ed. by S. Bullock, J. Noble, R. Watson, M.A. Bedau (MIT Press, Cambridge, 2008), pp. 374–381

    Google Scholar 

  22. J.T. Lizier, M. Prokopenko, D.J. Cornforth, The information dynamics of cascading failures in energy networks, in Proceedings of the European Conference on Complex Systems (ECCS), Warwick, UK, 2009, p. 54, ISBN: 978-0-9554123-1-8

    Google Scholar 

  23. C. Gershenson, RBNLab, Online software (2003), http://rbn.sourceforge.net

  24. B. Derrida, Y. Pomeau, Random networks of automata: a simple annealed approximation. Europhys. Lett. 1(2), 45–49 (1986)

    Article  Google Scholar 

  25. D.P. Feldman, J.P. Crutchfield, Discovering noncritical organization: Statistical mechanical, information theoretic, and computational views of patterns in one-dimensional spin systems, Santa Fe Institute Working Paper 98-04-026 (1998), http://www.santafe.edu/media/workingpapers/98-04-026.pdf

  26. P. Crucitti, V. Latora, M. Marchiori, Model for cascading failures in complex networks. Phys. Rev. E 69(4), 045104 (2004)

    Google Scholar 

  27. A.E. Motter, Y.-C. Lai, Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)

    Google Scholar 

  28. P. Ormerod, A. Heineike, Global recessions as a cascade phenomenon with interacting agents. J. Econ. Interact. Coord. 4(1), 15–26 (2009)

    Article  Google Scholar 

  29. P. Fernández, R.V. Solé, Neutral fitness landscapes in signalling networks. J. Roy. Soc. Interface 4(12), 41–47 (2007)

    Article  Google Scholar 

  30. I. Couzin, R. James, D. Croft, J. Krause, Social organization and information transfer in schooling fishes, in Fish Cognition and Behavior, ed. by B.C.K. Laland, J. Krause. Fish and Aquatic Resources (Blackwell Publishing, Oxford, 2006), pp. 166–185

    Google Scholar 

  31. D. Peak, J.D. West, S.M. Messinger, K.A. Mott, Evidence for complex, collective dynamics and emergent, distributed computation in plants. Proc. Natl. Acad. Sci. USA. 101(4), 918–922 (2004)

    Google Scholar 

  32. K.I. Goh, A.L. Barabási, Burstiness and memory in complex systems. Europhys. Lett. 81(4), 48002 (2008)

    Article  MathSciNet  Google Scholar 

  33. R. Kinney, P. Crucitti, R. Albert, V. Latora, Modeling cascading failures in the north american power grid. Eur. Phys. J. B 46(1), 101–107 (2005)

    Article  Google Scholar 

  34. Y. Xia, J. Fan, D. Hill, Cascading failure in Watts-Strogatz small-world networks. Physica A 389(6), 1281–1285 (2010)

    Article  Google Scholar 

  35. K.I. Goh, B. Kahng, D. Kim, Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87(27), 278701 (2001)

    Article  Google Scholar 

  36. D.J. Watts, S. Strogatz, Collective dynamics of ’small-world’networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  37. A. Tang, C. Honey, J. Hobbs, A. Sher, A. Litke, O. Sporns, J. Beggs, Information flow in local cortical networks is not democratic. BMC Neurosci. 9(1), O3 (2008)

    Google Scholar 

  38. C.J. Honey, R. Kotter, M. Breakspear, O. Sporns, Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. 104(24), 10 240–10 245 (2007)

    Google Scholar 

  39. M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Local assortativeness in scale-free networks. Europhys. Lett. 84(2), 28002 (2008)

    Google Scholar 

  40. M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Local assortativity and growth of internet, Eur. Phys. J. B 70(2), 275–285 (2009)

    Google Scholar 

  41. E. Estrada, Information mobility in complex networks. Phys. Rev. E 80(2), 026104 (2009)

    Article  Google Scholar 

  42. A.-L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  43. A.-L. Barabási, R. Albert, H. Jeong, Scale-free characteristics of random networks: The topology of the world-wide web. Physica A 281, 69–77 (2000)

    Article  Google Scholar 

  44. M. Prokopenko, F. Boschietti, A.J. Ryan, An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)

    Article  MathSciNet  Google Scholar 

  45. A. Samal, S. Jain, The regulatory network of e. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response. BMC Syst. Biol. 2(1), 21 (2008)

    Article  Google Scholar 

  46. P. Rämö, J. Kesseli, O. Yli-Harja, Perturbation avalanches and criticality in gene regulatory networks. J. Theor. Biol. 242(1), 164–170 (2006)

    Article  Google Scholar 

  47. I. Couzin, Collective minds. Nature 445(7129), 715–715 (2007)

    Article  Google Scholar 

  48. Q. Lu, C. Teuscher, Damage spreading in spatial and small-world random Boolean networks. arXiv:0904.4052 (2009), http://arxiv.org/abs/0904.4052

  49. J.T. Lizier, S. Pritam, M. Prokopenko, Information dynamics in small-world Boolean networks. Artif. Life 17(4), 293–314 (2011)

    Article  Google Scholar 

  50. M. Aldana, Boolean dynamics of networks with scale-free topology. Physica D 185(1), 45–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Abu-Sharkh, R.J. Arnold, J. Kohler, R. Li, T. Markvart, J.N. Ross, K. Steemers, P. Wilson, R. Yao, Can microgrids make a major contribution to UK energy supply? Renew. Sustain. Energy Rev. 10(2), 78–127 (2006)

    Article  Google Scholar 

  52. F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, D.R. White, Economic networks: The new challenges. Science 325(5939), 422–425 (2009)

    MathSciNet  MATH  Google Scholar 

  53. R. Yang, W.-X. Wang, Y.-C. Lai, G. Chen, Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Phys. Rev. E 79(2), 026112 (2009)

    Google Scholar 

  54. M.W. Covert, E.M. Knight, J.L. Reed, M.J. Herrgard, B.O. Palsson, Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987), 92–96 (2004)

    Google Scholar 

  55. M.I. Davidich, S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2), e1672 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Lizier .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lizier, J.T. (2013). Information Dynamics in Networks and Phase Transitions. In: The Local Information Dynamics of Distributed Computation in Complex Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32952-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32952-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32951-7

  • Online ISBN: 978-3-642-32952-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics