Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Complex systems science is the study of large collections of (generally simple) entities, where the global behaviour is a non-trivial result of the local interactions of the individual elements [1]. This approach seeks a fundamental understanding of how such collective behaviour results from these interactions between simple individuals. In particular, it seeks to gain and apply this understanding across many different disciplines, examining both natural and man-made systems as apparently diverse as insect colonies, the brain, the immune system, economies and the world wide web [2]. Complex behaviour is often described as incorporating elements of both order and disorder (or chaos), and these elements can be seen in all of the above, e.g. path-following (order) versus exploration (disorder) in ant foraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For introductions to the beginnings of complex systems science, see [2, 11, 12, 14].

  2. 2.

    In the sense of chaotic behaviour.

  3. 3.

    Particularly those with less well-defined or more complex transitions.

  4. 4.

    \(H_{\mu X} (k)\) here is equivalent to \(h_\mu (L-1)\) in [39]. This means the sum in Eq. (2.18) starts from \(k=0\) as equivalent to \(L=1\).

  5. 5.

    The excess entropy was labelled the “effective measure complexity” by Grassberger in [42].

  6. 6.

    Local information-theoretic measures are known as point-wise measures elsewhere [44].

  7. 7.

    Appendix A describes two different approaches that have been presented to quantifying partial localisations of the mutual information \(I(x_n;Y)\) [48]. The partial localisation \(I(x_n;Y)\) considers how much information \(I(x_n;Y)\) a specific value \(x_n\) at time step \(n\) gives about what value \(Y\) might take. We note this is distinct from the full localisations \(i(x_n;y_n)\) that we consider here; this quantifies the amount of information conveyed by a specific value \(x_n\) about the specific value \(y_n\) that \(Y\) actually takes at time step \(n\) (or vice-versa). Our interest lies in these full localisations \(i(x_n;y_n)\), as they quantify the specific amount of information involved or manipulated in the dynamics of the computation at time step \(n\) with the given realisation \(\left\{ x_n,y_n \right\} \). Appendix A demonstrates that there is only one approach to quantifying full localisations \(i(x_n;y_n)\) that fulfils both additivity and symmetry properties.

    We also note that a similar approach to “localising” information-theoretic values is by using sliding windows of observations (e.g. [49]). While this does provide a more local measure than averaging over all available observations, it is not local in the same sense as the term is used here (i.e. it does not look at the information involved in the computation at a single specific time step).

  8. 8.

    The transfer entropy is arguably the most important measure used in this thesis. As such, recommendations on approaches to compute it will be followed for other measures also for consistency. The transfer entropy will be introduced in Chap. 4

  9. 9.

    An attractor is a single global state \(\mathbf x _n = \{ \ldots , x_{i-1,n}, x_{i,n}, x_{i+1,n}, \ldots \}\) or periodic sequence of global states that a CA (generally considering fixed sizes) can reach after a finite number of time steps but then never leave (unless some stochasticity is introduced into the dynamics).

  10. 10.

    A transient is a path of global states that a CA could traverse before reaching an attractor. For deterministic CAs, two or more transient paths can converge on the same next state, but a given state cannot diverge via multiple transient paths to more than one next state. A CA of finite size \(C\) cells must reach an attractor after a finite number of time steps (since there are a finite number \(b^C\) of possible global states, where \(b\) is the base or number of possible discrete states for each cell).

  11. 11.

    Of course, blinkers can be considered to be vertical or non-moving gliders, while both are particles.

  12. 12.

    However as discussed in Chap. 4 this is a symmetric measure not capturing directional transfer.

  13. 13.

    Langton’s use of mutual information in [15] is a symmetric measure not capturing directional transfer. As we will describe in Sect. 3.1, Grassberger inferred the excess entropy to be infinite in some CAs under certain circumstances by studying trends of the entropy rate [42, 114]. The study did not make any direct measurements of the excess entropy apart from these inferences, and focussed on collective excess entropy. Crutchfield and Feldman measure the excess entropy in spatially-extended blocks in various CAs in an ensemble study in [19], however this is not an information storage since the measurement is not made temporally.

  14. 14.

    Measured using the CimulA package [100] over 600 time steps of 100,000 cells, with light cone depths of 3 time steps.

  15. 15.

    Lattice systems are those with a regular spatial ordering for their agents or variables, typically being placed on a one or two-dimensional array.

  16. 16.

    The work in [69] is part of an interesting trend towards the use of information-theoretic measures to study network topology, e.g. see also [70]. Though information-theoretic, since these measures study topology rather than time-series dynamics they remain out of scope here.

  17. 17.

    Though, of course either of these can arise at random.

  18. 18.

    There has been some debate about the best updating scheme to model GRNs [143], and variations on the synchronous CRBN model are known to produce different behaviours. However, the relevant phase transitions are known to exist in all updating schemes, and their properties depend more on the network size than on the updating scheme [144]. As such, the use of CRBNs is justified for ensemble studies such as ours [128].

  19. 19.

    The justification or otherwise of the suggestion that natural evolution is driven by the intrinsic forces of information processing is irrelevant to whether information-driven design can be used as a successful tool for artificial systems.

References

  1. M. Prokopenko, F. Boschietti, A.J. Ryan, An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)

    Article  MathSciNet  Google Scholar 

  2. M. Mitchell, Complexity: a guided tour (Oxford University Press, New York, 2009)

    Google Scholar 

  3. P. Gong, C. van Leeuwen, Distributed dynamical computation in neural circuits with propagating coherent activity patterns. PLoS Comput. Biol. 5(12), e1000611 (2009)

    Google Scholar 

  4. D. Peak, J.D. West, S.M. Messinger, K.A. Mott, Evidence for complex, collective dynamics and emergent, distributed computation in plants. Proc. Nat. Acad. Sci. U.S.A. 101(4), 918–922 (2004)

    Google Scholar 

  5. D.J. Watts, S. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Google Scholar 

  6. A.-L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  7. D.J. Watts, Six Degrees: the Science of a Connected Age (Norton, New York, 2003)

    Google Scholar 

  8. A.-L. Barabási, Scale-free networks: decade and beyond. Science 325(5939), 412–413 (2009)

    Google Scholar 

  9. M. Mitchell, Complex systems: network thinking. Artif. Intell. 170(18), 1194–1212 (2006)

    Google Scholar 

  10. M. Prokopenko, Guided self-organization. HFSP J. 3(5), 287–289 (2009)

    Google Scholar 

  11. F. Heylighen, P. Cilliers, C. Gershenson, Complexity and philosophy, in Complexity, Science and Society, ed. by J. Bogg, R. Geyer (Radcliffe Publishing, Oxford, 2007)

    Google Scholar 

  12. C.R. Shalizi, Methods and techniques in complex systems science: an overview, in Complex Systems Science in Biomedicine, ed. by T.S. Deisboeck, J.Y. Kresh (Springer, Berlin, 2006), pp. 33–114

    Google Scholar 

  13. J. Gleick, Chaos: Making a New Science (Penguin, New York, 1988)

    Google Scholar 

  14. J.R. Gribbin, Deep Simplicity: Chaos, Complexity and the Emergence of Life (Penguin, London, 2005)

    Google Scholar 

  15. C.G. Langton, Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42(1–3), 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  16. S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, New York, 1993)

    Google Scholar 

  17. O. Miramontes, Order-disorder transitions in the behavior of ant societies. Complexity 1(3), 56–60 (1995)

    MathSciNet  Google Scholar 

  18. M. Mitchell, J.P. Crutchfield, P.T. Hraber, Dynamics, computation, and the "edge of chaos": a re-examination, in Complexity: Metaphors, Models, and Reality, ser. Santa Fe Institute Studies in the Sciences of Complexity, ed. by G. Cowan, D. Pines, D. Melzner, vol. 19 (Addison-Wesley, Reading, 1994), pp. 497–513

    Google Scholar 

  19. D.P. Feldman, C.S. McTague, J.P. Crutchfield, The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. Chaos 18(4), 043106 (2008)

    Article  MathSciNet  Google Scholar 

  20. C.R. Shalizi, K.L. Shalizi, R. Haslinger, Quantifying self-organization with optimal predictors. Phys. Rev. Lett. 93(11), 118701 (2004)

    Article  Google Scholar 

  21. D. Polani, Foundations and formalizations of self-organization, in Advances in Applied Self-organizing Systems, ser. Advanced Information and Knowledge Processing, ed. by M. Prokopenko (Springer, London, 2008), pp. 19–37

    Google Scholar 

  22. L. Correia, Self-organisation: a case for embodiment, in Proceedings of the Evolution of Complexity Workshop at Artificial Life X: the 10th International Conference on the Simulation and Synthesis of Living Systems (MIT Press, Bloomington, 2006), pp. 111–116

    Google Scholar 

  23. C. Prehofer, C. Bettstetter, Self-organization in communication networks: principles and design paradigms. IEEE Commun. Mag. 43(7), 78–85 (2005)

    Google Scholar 

  24. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Google Scholar 

  25. M. Buchanan, Ubiquity (Phoenix, London, 2001)

    Google Scholar 

  26. J. Léveillé, M. Versace, S. Grossberg, Running as fast as it can: how spiking dynamics form object groupings in the laminar circuits of visual cortex. J. Comput. Neurosci. 28(2), 323–346 (2010)

    Google Scholar 

  27. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: from Natural to Artificial Systems (Oxford University Press, New York, 1999)

    Google Scholar 

  28. F. Ratnieks, Outsmarted by ants. Science 436, 465 (2005)

    Google Scholar 

  29. S. Strogatz, Sync: the Emerging Science of Spontaneous Order (Hyperion Books, New York, 2003)

    Google Scholar 

  30. R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: a Statistical Physics Approach (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  31. C. Adami, What is complexity? BioEssays 24(12), 1085–1094 (2002)

    Google Scholar 

  32. M. Prokopenko, P. Wang, P. Valencia, D. Price, M. Foreman, A. Farmer, Self-organizing hierarchies in sensor and communication networks. Artif. Life 11(4), 407–426 (2005)

    Google Scholar 

  33. M. Prokopenko, P. Wang, D. Price, Complexity metrics for self-monitoring impact sensing networks, in Proceedings of the, NASA/DoD Conference on Evolvable Hardware (EH’05), (IEEE Computer Society, Washington, 2005), pp. 239–246

    Google Scholar 

  34. J. Wessnitzer, A. Adamatzky, C. Melhuish, Towards self-organized robot formations: a decentralised approach, in Proceedings of the Towards Intelligent Mobile Robots (TIMR) Conference, Manchester, (2001)

    Google Scholar 

  35. M. Gell-Mann, The Quark and the Jaguar (W.H. Freeman, New York, 1994)

    MATH  Google Scholar 

  36. C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27, 379–423, 623–656, (1948)

    Google Scholar 

  37. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

    Google Scholar 

  38. D.J. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  39. J.P. Crutchfield, D.P. Feldman, Regularities unseen, randomness observed: levels of entropy convergence. Chaos 13(1), 25–54 (2003)

    Google Scholar 

  40. G. Tononi, O. Sporns, G. Edelman, A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Nat. Acad. Sci. 91(11), 5033–5037 (1994)

    Google Scholar 

  41. A.S. Klyubin, D. Polani, C.L. Nehaniv, Empowerment: a universal agent-centric measure of control, in Proceedings of the IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, vol. 1 (IEEE Press, Edinburgh, 2005), pp. 128–135

    Google Scholar 

  42. P. Grassberger, Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 25(9), 907–938 (1986)

    Google Scholar 

  43. W. Bialek, I. Nemenman, N. Tishby, Complexity through nonextensivity. Physica A 302(1–4), 89–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. C.D. Manning, H. Schütze, Foundations of Statistical Natural Language Processing (The MIT Press, Cambridge, 1999)

    Google Scholar 

  45. J. Dasan, T.R. Ramamohan, A. Singh, P.R. Nott, Stress fluctuations in sheared Stokesian suspensions. Phys. Rev. E 66(2), 021409 (2002)

    Google Scholar 

  46. T. Schreiber, Interdisciplinary application of nonlinear time series methods—the generalized dimensions. Phys. Rep. 308, 1–64 (1999)

    Google Scholar 

  47. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  48. M. R. DeWeese, M. Meister, How to measure the information gained from one symbol, Network: Comp. Neural Syst., 10, 325–340 (1999)

    Google Scholar 

  49. P.F. Verdes, Assessing causality from multivariate time series, Phys. Rev. E, 72(2), 026 222, (2005)

    Google Scholar 

  50. C.R. Shalizi, Causal architecture, complexity and self-organization in time series and cellular automata, Ph.D. Dissertation, University of Wisconsin-Madison, 2001

    Google Scholar 

  51. C.R. Shalizi, R. Haslinger, J.-B. Rouquier, K.L. Klinkner, C. Moore, Automatic filters for the detection of coherent structure in spatiotemporal systems. Phys. Rev. E 73(3), 036104 (2006)

    Google Scholar 

  52. T. Helvik, K. Lindgren, M.G. Nordahl, Local information in one-dimensional cellular automata, in Proceedings of the International Conference on Cellular Automata for Research and Industry, Amsterdam, ed. by P.M. Sloot, B. Chopard, A.G. Hoekstra, ser. Lecture Notes in Computer Science, vol. 3305 (Springer, Berlin, 2004), pp. 121–130

    Google Scholar 

  53. T. Schreiber, Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)

    Google Scholar 

  54. J. Pahle, A.K. Green, C.J. Dixon, U. Kummer, Information transfer in signaling pathways: a study using coupled simulated and experimental data. BMC Bioinform. 9, 139 (2008)

    Google Scholar 

  55. A. Kraskov, H. Stögbauer, P. Grassberger, Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)

    Google Scholar 

  56. A. Kraskov, Synchronization and interdependence measures and their applications to the electroencephalogram of epilepsy patients and clustering of data, ser. Publication Series of the John von Neumann Institute for Computing. Ph.D. thesis, vol. 24, John von Neumann Institute for Computing, Jülich, 2004

    Google Scholar 

  57. L. Kozachenko, N. Leonenko, A statistical estimate for the entropy of a random vector. Prob. Inf. Transm. 23, 9–16 (1987)

    Google Scholar 

  58. D. Polani, Information: currency of life? HFSP J. 3(5), 307–316 (2009)

    Google Scholar 

  59. J.J. Gibson, The Ecological Approach to Visual Perception (Houghton Mifflin Company, Boston, 1979)

    Google Scholar 

  60. J.P. Crutchfield, The calculi of emergence: computation, dynamics and induction. Physica D 75(1–3), 11–54 (1994)

    Article  MATH  Google Scholar 

  61. P. Rämö, S. Kauffman, J. Kesseli, O. Yli-Harja, Measures for information propagation in Boolean networks. Physica D 227(1), 100–104 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. A. Wuensche, Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complexity 4(3), 47–66 (1999)

    Google Scholar 

  63. N. Ay, E. Olbrich, N. Bertschinger, J. Jost, A unifying framework for complexity measures of finite systems, in Proceedings of the European Conference on Complex Systems (ECCS ’06), Oxford, UK, ed. by J. Jost, F. Reed-Tsochas, P. Schuster, Santa Fe Institute Working Paper 06–08-028. 2006, p. 80

    Google Scholar 

  64. E. Olbrich, N. Bertschinger, N. Ay, J. Jost, How should complexity scale with system size? Eur. Phys. J. B 63(3), 407–415 (2008)

    Google Scholar 

  65. J.P. Crutchfield, K. Young, Inferring statistical complexity. Phys. Rev. Lett. 63(2), 105 (1989)

    Google Scholar 

  66. C.R. Shalizi, J.P. Crutchfield, Computational mechanics: pattern and prediction, structure and simplicity. J. Stat. Phys. 104, 817–879 (2001)

    Google Scholar 

  67. R.V. Solé, S. Valverde, Information transfer and phase transitions in a model of internet traffic. Physica A 289(3–4), 595–605 (2001)

    Article  MATH  Google Scholar 

  68. M. Mitchell, P.T. Hraber, J.P. Crutchfield, Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst. 7, 89–130 (1993)

    Google Scholar 

  69. R.V. Solé, S. Valverde, Information theory of complex networks: on evolution and architectural constraints, in Complex Networks,, ed. by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai, ser. Lecture Notes in Physics, vol. 650 (Springer, Berlin, 2004), pp. 189–207

    Google Scholar 

  70. M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Assortativeness and information in scale-free networks. Eur. Phys. J. B 67(3), 291–300 (2009)

    Google Scholar 

  71. M.G. Kitzbichler, M.L. Smith, S.R. Christensen, E. Bullmore, Broadband criticality of human brain network synchronization. PLoS Comput. Biol. 5(3), e1000314 (2009)

    Google Scholar 

  72. R. Morgado, M. Cieśla, L. Longa, F.A. Oliveira, Synchronization in the presence of memory. Europhys. Lett. 79(1), 10002 (2007)

    Google Scholar 

  73. M. Prokopenko, V. Gerasimov, I. Tanev, Evolving spatiotemporal coordination in a modular robotic system, in Proceedings of the Ninth International Conference on the Simulation of Adaptive Behavior (SAB’06), Rome,, ed. by S. Nolfi, G. Baldassarre, R. Calabretta, J. Hallam, D. Marocco, J.-A. Meyer, D. Parisi, ser. Lecture Notes in Artificial Intelligence, vol. 4095 (Springer, Berlin, 2006), pp. 548–559

    Google Scholar 

  74. K.I. Goh, A.L. Barabási, Burstiness and memory in complex systems. Europhys. Lett. 81(4), 48002 (2008)

    Google Scholar 

  75. I. Couzin, R. James, D. Croft, J. Krause, Social organization and information transfer in schooling fishes, in Fish Cognition and Behavior, ed. by B.C.K. Laland, J. Krause, ser. Fish and Aquatic Resources(Blackwell Publishing, New York, 2006), pp. 166–185

    Google Scholar 

  76. J.A. Brown, J.A. Tuszynski, A review of the ferroelectric model of microtubules. Ferroelectrics 220, 141–156 (1999)

    Article  Google Scholar 

  77. M.H. Jakubowski, K. Steiglitz, R. Squier, Information transfer between solitary waves in the saturable Schrödinger equation. Phys. Rev. E 56(6), 7267 (1997)

    Google Scholar 

  78. A. Adamatzky (ed.), Collision-Based Computing (Springer, Berlin, 2002)

    Google Scholar 

  79. D.E. Edmundson, R.H. Enns, Fully 3-dimensional collisions of bistable light bullets. Opt. Lett. 18, 1609–1611 (1993)

    Google Scholar 

  80. O. Kinouchi, M. Copelli, Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2(5), 348–351 (2006)

    Google Scholar 

  81. J.J. Atick, Could information theory provide an ecological theory of sensory processing? Netw. Comput. Neural Syst. 3(2), 213 (1992)

    Google Scholar 

  82. M.A. Sánchez-Montañés, F.J. Corbacho, Towards a new information processing measure for neural computation, in Proceedings of the International Conference on Artificial Neural Networks (ICANN 2002), Madrid, Spain, ed. by J. Dorronsoro, ser. Lecture Notes in Computer Science, vol. 2415 (Springer, Berlin, 2002), pp. 637–642

    Google Scholar 

  83. T. Yamada, K. Aihara, Spatio-temporal complex dynamics and computation in chaotic neural networks, in Proceedings of the IEEE Symposium on Emerging Technologies and Factory Automation (ETFA ’94), Tokyo, (IEEE, New York, 1994), pp. 239–244

    Google Scholar 

  84. D. Coffey, Self-organization, complexity and chaos: the new biology for medicine. Nat. Med. 4(8), 882 (1998)

    Article  Google Scholar 

  85. T.Q. Tung, T. Ryu, K.H. Lee, D. Lee, Inferring gene regulatory networks from microarray time series data using transfer entropy, in Proceedings of the Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS ’07), Maribor, Slovenia, ed. by P. Kokol, V. Podgorelec, D. Mičetič-Turk, M. Zorman, M. Verlič (IEEE, Los Alamitos, 2007), pp. 383–388

    Google Scholar 

  86. K. Ishiguro, N. Otsu, M. Lungarella, Y. Kuniyoshi, Detecting direction of causal interactions between dynamically coupled signals. Phys. Rev. E 77(2), 026216 (2008)

    Google Scholar 

  87. X.S. Liang, Information flow within stochastic dynamical systems. Phys. Rev. E 78(3), 031113 (2008)

    Google Scholar 

  88. M. Mitchell, Computation in cellular automata: a selected review, in Non-Standard Computation, ed. by T. Gramss, S. Bornholdt, M. Gross, M. Mitchell, T. Pellizzari (VCH Verlagsgesellschaft, Weinheim, 1998), pp. 95–140

    Google Scholar 

  89. S. Wolfram, Universality and complexity in cellular automata. Physica D 10(1–2), 1–35 (1984)

    Article  MathSciNet  Google Scholar 

  90. S. Wolfram, Cellular automata as models of complexity. Nature, 311(5985), 419–424, (1984)

    Google Scholar 

  91. S. Wolfram, Computation theory of cellular automata, Commun. Math. Phys. 96(1), 15–57, (1984)

    Google Scholar 

  92. S. Wolfram, A New Kind of Science. (Wolfram Media, Champaign, 2002)

    Google Scholar 

  93. M. Mitchell, J.P. Crutchfield, P.T. Hraber, Evolving cellular automata to perform computations: mechanisms and impediments. Physica D 75, 361–391 (1994)

    Google Scholar 

  94. J.E. Hanson, J.P. Crutchfield, The attractor-basin portait of a cellular automaton. J. Stat. Phys. 66, 1415–1462 (1992)

    Google Scholar 

  95. H. Gutowitz, C. Domain, The topological skeleton of cellular automaton dynamics. Physica D 103(1–4), 155–168 (1997)

    MathSciNet  MATH  Google Scholar 

  96. J. Von Neumann, Theory of self-reproducing automata ed. by A.W. Burks, (University of Illinois Press, Urbana, 1966)

    Google Scholar 

  97. J.T. Lizier, M. Prokopenko, A.Y. Zomaya, Information modification and particle collisions in distributed computation. Chaos 20(3), 037109 (2010)

    Google Scholar 

  98. J.T. Lizier, M. Prokopenko, A.Y. Zomaya, Coherent information structure in complex computation, Theory Biosci. Theory Biosci. 131(3), 193–203 (2012), doi:10.1007/s12064-011-0145-9

  99. L. Gray, A mathematician looks at wolfram’s new kind of science. Am. Math. Soc. 50(2), 200–211 (2003)

    Google Scholar 

  100. J.-B. Rouquier, Cimula—a cellular automata analyser (2005), Université de Lyon, Software. http://cimula.sourceforge.net/

  101. S. Lloyd, Programming the Universe (Vintage Books, New York, 2006)

    Google Scholar 

  102. J.L. Casti, Chaos, Gödel and truth, in Beyond belief: randomness, prediction and explanation in science, ed. by J.L. Casti, A. Karlqvist (CRC Press, Boca Raton, 1991), pp. 280–327

    Google Scholar 

  103. P. Fernández, R.V. Solé, The role of computation in complex regulatory networks, in Scale-free Networks and Genome Biology, ed. by E.V. Koonin, Y.I. Wolf, G.P. Karev (Landes Bioscience, Georgetown, 2006), pp. 206–225

    Google Scholar 

  104. J. H. Conway, What is life? in Winning ways for your mathematical plays, ed. by E. Berlekamp, J.H. Conway, R. Guy, vol. 2, ch. 25(Academic Press, New York, 1982), pp. 927–962

    Google Scholar 

  105. M. Cook, Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    Google Scholar 

  106. K. Lindgren, M.G. Nordahl, Universal computation in simple one-dimensional cellular automata. Complex Syst. 4, 299–318 (1990)

    Google Scholar 

  107. M.H. Jakubowski, K. Steiglitz, R.K. Squier, Computing with solitons: a review and prospectus. Multiple-Valued Logic 6(5–6), 439–462 (2001)

    Google Scholar 

  108. D. Eppstein, Searching for spaceships, in More Games of No Chance, ed. by R.J. Nowakowski, ser. MSRI Publications, vol. 42 (Cambridge Univ. Press, Cambridge, 2002), pp. 433–453

    Google Scholar 

  109. M. Mitchell, J.P. Crutchfield, R. Das, Evolving cellular automata with genetic algorithms: a review of recent work, in Proceedings of the First International Conference on Evolutionary Computation and Its Applications, Moscow, ed. by E. D. Goodman, W. Punch, V. Uskov (Russian Academy of Sciences, Moscow, 1996)

    Google Scholar 

  110. N. Boccara, J. Nasser, M. Roger, Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. Phys. Rev. A 44(2), 866–875 (1991)

    Google Scholar 

  111. B. Martin, A group interpretation of particles generated by one dimensional cellular automaton, Wolfram’s 54 rule. Int. J. Mod. Phys. C 11(1), 101–123 (2000)

    Google Scholar 

  112. G.J. Martinez, A. Adamatzky, H.V. McIntosh, Phenomenology of glider collisions in cellular automaton rule 54 and associated logical gates. Chaos, Solitons Fractals 28(1), 100–111 (2006)

    Google Scholar 

  113. W. Hordijk, C.R. Shalizi, J.P. Crutchfield, Upper bound on the products of particle interactions in cellular automata. Physica D 154(3–4), 240–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  114. P. Grassberger, Long-range effects in an elementary cellular automaton. J. Stat. Phys. 45(1–2), 27–39 (1986)

    Google Scholar 

  115. H.V. McIntosh, Linear Cellular Automata (Universidad Autónoma de Puebla, Puebla, 1990)

    Google Scholar 

  116. R. Badii, A. Politi, Thermodynamics and complexity of cellular automata. Phys. Rev. Lett. 78(3), 444 (1997)

    Google Scholar 

  117. A. Lafusa, T. Bossomaier, Hyperplane localisation of self-replicating and other complex cellular automata rules, in Proceedings of the, IEEE Congress on Evolutionary Computation, Edinburgh, vol. 1 (IEEE Press, New York, 2005), pp. 844–849

    Google Scholar 

  118. P. Grassberger, New mechanism for deterministic diffusion. Phys. Rev. A 28(6), 3666 (1983)

    Google Scholar 

  119. P. Grassberger, Information content and predictability of lumped and distributed dynamical systems. Physica Scripta 40(3), 346, 1989

    Google Scholar 

  120. J.E. Hanson, J.P. Crutchfield, Computational mechanics of cellular automata: an example. Physica D 103(1–4), 169–189 (1997)

    Google Scholar 

  121. S.N. Dorogovstev, J.F.F. Mendes, Evolution of networks: From biological nets to the Internet and WWW (Oxford University Press, New York, 2005)

    Google Scholar 

  122. A.-L. Barabási, R. Albert, H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web. Physica A 281, 69–77 (2000)

    Google Scholar 

  123. A.-L. Barabási, E. Bonabeau, Scale-free networks. Sci. Am. 288, 50–59 (2003)

    Google Scholar 

  124. V. Latora, M. Marchiori, Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Google Scholar 

  125. F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, D.R. White, Economic networks: the new challenges. Science 325(5939), 422–425 (2009)

    Google Scholar 

  126. B. Derrida, Y. Pomeau, Random networks of automata: a simple annealed approximation. Europhys. Lett. 1(2), 45–49 (1986)

    Google Scholar 

  127. A. Wuensche, Attractor basins of discrete networks, Ph.D. Dissertation, The University of Sussex, 1997

    Google Scholar 

  128. C. Gershenson, Updating schemes in random Boolean networks: do they really matter? in Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife IX), Boston, USA, ed. by J. Pollack, M. Bedau, P. Husbands, T. Ikegami, R.A. Watson (MIT Press, Cambridge, 2004), pp. 238–243

    Google Scholar 

  129. T. Rohlf, N. Gulbahce, C. Teuscher, Damage spreading and criticality in finite random dynamical networks. Phys. Rev. Lett. 99(24), 248701 (2007)

    Google Scholar 

  130. E. Estrada, Information mobility in complex networks. Phys. Rev. E 80(2), 026104 (2009)

    Google Scholar 

  131. C. Gershenson, Introduction to random Boolean networks, in Proceedings of the Workshops and Tutorials of the Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife IX), Boston, USA, ed. by M. Bedau, P. Husbands, T. Hutton, S. Kumar, H. Suzuki, 2004, pp. 160–173

    Google Scholar 

  132. A.S. Ribeiro, S.A. Kauffman, J. Lloyd-Price, B. Samuelsson, J.E.S. Socolar, Mutual information in random Boolean models of regulatory networks. Phys. Rev. E 77(1), 011901 (2008)

    Google Scholar 

  133. A.S. Ribeiro, R.A. Este, J. Lloyd-Price, S.A. Kauffman, Measuring information propagation and retention in boolean networks and its implications to a model of human organizations. WSEAS Trans. Syst. 5, 2935 (2006)

    Google Scholar 

  134. P. Crucitti, V. Latora, M. Marchiori, Model for cascading failures in complex networks. Phys. Rev. E 69(4), 045104 (2004)

    Google Scholar 

  135. A.E. Motter, Y.-C. Lai, Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)

    Google Scholar 

  136. J. Glanz, R. Perez-Pena, 90 seconds that left tens of millions of people in the dark, New York Times, August 26 2003

    Google Scholar 

  137. C. Oosawa, M.A. Savageau, Effects of alternative connectivity on behavior of randomly constructed Boolean networks. Physica D 170(2), 143–161 (2002)

    Article  MATH  Google Scholar 

  138. Q. Lu, C. Teuscher, Damage spreading in spatial and small-world random Boolean networks (2009), arXiv:0904.4052. http://arxiv.org/abs/0904.4052

  139. A. Samal, S. Jain, The regulatory network of e. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response. BMC Syst. Biol. 2(1), 21 (2008)

    Google Scholar 

  140. M.W. Covert, E.M. Knight, J.L. Reed, M.J. Herrgard, B.O. Palsson, Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987), 92–96 (2004)

    Article  Google Scholar 

  141. M.I. Davidich, S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2), e1672 (2008)

    Article  Google Scholar 

  142. M. Aldana, Boolean dynamics of networks with scale-free topology. Physica D 185(1), 45–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  143. C. Darabos, M. Giacobini, M. Tomassini, Semi-synchronous activation in scale-free Boolean networks, in Proceedings of the 9th European Conference on Artificial Life (ECAL), Lisbon, Portugal ed. by F. Almeida e Costa, L. M. Rocha, E. Costa, I. Harvey, A. Coutinho, ser. Lecture Notes in Artificial Intelligence, vol. 4648 (Springer, Berlin, 2007), pp. 976–985

    Google Scholar 

  144. C. Gershenson, Phase transitions in random Boolean networks with different updating schemes (2004), arXiv:nlin/0311008v1. http://arxiv.org/abs/nlin/0311008

  145. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3–4), 117–149 (1944)

    Google Scholar 

  146. I. Tanev, T. Ray, A. Buller, Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Trans. Robot 21(4), 632–645 (2005)

    Google Scholar 

  147. R. Der, U. Steinmetz, F. Pasemann, Homeokinesis—a new principle to back up evolution with learning, in Computational Intelligence for Modelling, Control, and Automation, ser. Concurrent Systems Engineering Series, vol. 55 (IOS Press, Amsterdam, 1999), pp. 43–47

    Google Scholar 

  148. L. Yaeger, O. Sporns, Evolution of neural structure and complexity in a computational ecology, in Proceedings of the Tenth International Conference on Simulation and Synthesis of Living Systems (ALifeX), Bloomington, Indiana, USA, ed. by L.M. Rocha, L.S. Yaeger, M.A. Bedau, D. Floreano, R.L. Goldstone, A. Vespignani, (MIT Press, Cambridge, 2006), pp. 330–336

    Google Scholar 

  149. L. Yaeger, V. Griffith, O. Sporns, Passive and driven trends in the evolution of complexity, in Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems (ALifeXI), Winchester, UK, ed. by S. Bullock, J. Noble, R. Watson, M.A. Bedau (MIT Press, Cambridge, 2008), pp. 725–732

    Google Scholar 

  150. L.S. Yaeger, How evolution guides complexity. HFSP J. 3(5), 328–339 (2009)

    Google Scholar 

  151. M. Prokopenko, V. Gerasimov, I. Tanev, Measuring spatiotemporal coordination in a modular robotic system, in Proceedings of the 10th International Conference on the Simulation and Synthesis of Living Systems (ALifeX), Bloomington, Indiana, USA, ed. by L.M. Rocha, L.S. Yaeger, M.A. Bedau, D. Floreano, R.L. Goldstone, A. Vespignani (MIT Press, Cambridge, 2006), pp. 185–191

    Google Scholar 

  152. G. Baldassare, D. Parisi, S. Nolfi, Measuring coordination as entropy decrease in groups on linked simulated robots, in Proceedings of the International Conference on Complex Systems (ICCS2004), (Boston, 2004) (to be published)

    Google Scholar 

  153. N. Ay, N. Bertschinger, R. Der, F. Güttler, E. Olbrich, Predictive information and explorative behavior of autonomous robots. Eur. Phys. J. B 63(3), 329–339 (2008)

    Google Scholar 

  154. D. Polani, O. Sporns, M. Lungarella, How information and embodiment shape intelligent information processing, in Proceedings of the 50th Anniversary Summit of Artificial Intelligence, New York ed. by M. Lungarella, F. Iida, J. Bongard, R. Pfeifer, ser. Lecture Notes in Computer Science, vol. 4850 (Springer, Berlin, 2007), pp. 99–111

    Google Scholar 

  155. A.S. Klyubin, D. Polani, C.L. Nehaniv, Keep your options open: an information-based driving principle for sensorimotor systems. PLoS ONE 3(12), e4018 (2008)

    Article  Google Scholar 

  156. A.S. Klyubin, D. Polani, C.L. Nehaniv, All else being equal be empowered, in Proceedings of the 8th European Conference on Artificial Life (ECAL), Kent, UK ed. by M.S. Capcarrere, A. A. Freitas, P.J. Bentley, C.G. Johnson, J. Timmis, ser. Lecture Notes in Computer Science, vol. 3630 (Springer ,Berlin, 2005), pp. 744–753

    Google Scholar 

  157. O. Sporns, M. Lungarella, Evolving coordinated behavior by maximizing information structure, in Proceedings of the Tenth International Conference on Simulation and Synthesis of Living Systems (ALifeX), Bloomington, Indiana, USA, ed. by L.M. Rocha, L.S. Yaeger, M.A. Bedau, D. Floreano, R.L. Goldstone, A. Vespignani, (MIT Press, Cambridge, 2006), pp. 323–329

    Google Scholar 

  158. V. Sperati, V. Trianni, S. Nolfi, Evolving coordinated group behaviours through maximisation of mean mutual information. Swarm Intell. 2(2–4), 73–95 (2008)

    Google Scholar 

  159. F. Hesse, G. Martius, R. Der, J.M. Herrmann, A sensor-based learning algorithm for the self-organization of robot behavior. Algorithms 2(1), 398–409 (2009)

    Article  Google Scholar 

  160. C. Teuscher, I. Nemenman, F.J. Alexander, Novel computing paradigms: Quo vadis? Physica D, 237(9), v-viii (2008)

    Google Scholar 

  161. M. Lungarella, O. Sporns, Mapping information flow in sensorimotor networks. PLoS Comput. Biol. 2(10), e144 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Lizier .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lizier, J.T. (2013). Computation in Complex Systems. In: The Local Information Dynamics of Distributed Computation in Complex Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32952-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32952-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32951-7

  • Online ISBN: 978-3-642-32952-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics