Advertisement

Introduction

  • Joseph T. LizierEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The nature of distributed computation has long been a topic of interest in complex systems science, physics, artificial life, bio- and neuroinformatics. In all of these relevant fields, distributed computation is generally discussed in terms of memory, communication, and processing.

Keywords

Cellular Automaton Coherent Structure Gene Regulatory Network Information Transfer Information Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Gell-Mann, The Quark and the Jaguar (W.H. Freeman, New York, 1994)zbMATHGoogle Scholar
  2. 2.
    M. Prokopenko, V. Gerasimov, I. Tanev, Evolving spatiotemporal coordination in a modular robotic system, in Proceedings of the Ninth International Conference on the Simulation of Adaptive Behavior (SAB’06), ed. by S. Nolfi, G. Baldassarre, R. Calabretta, J. Hallam, D. Marocco, J.-A. Meyer, D. Parisi, Rome, ser. Lecture Notes in Artificial Intelligence, vol. 4095 (Springer, 2006), pp. 548–559.Google Scholar
  3. 3.
    K.I. Goh, A.L. Barabási, Burstiness and memory in complex systems. Europhys. Lett. 81(4), 48002 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Morgado, M. Cieśla, L. Longa, F.A. Oliveira, Synchronization in the presence of memory. Europhys. Lett. 79(1), 10002 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J.A. Brown, J.A. Tuszynski, A review of the ferroelectric model of microtubules. Ferroelectr. 220, 141–156 (1999)CrossRefGoogle Scholar
  6. 6.
    J. Pahle, A.K. Green, C.J. Dixon, U. Kummer, Information transfer in signaling pathways: a study using coupled simulated and experimental data. BMC Bioinform. 9, 139 (2008)CrossRefGoogle Scholar
  7. 7.
    I. Couzin, R. James, D. Croft, J. Krause, Social organization and information transfer in schooling fishes, in Fish Cognition and Behavior, ser. Fish and Aquatic Resources, ed. by B.C.K. Laland, J. Krause (Blackwell Publishing, Cambridge, 2006), pp. 166–185.Google Scholar
  8. 8.
    A.S. Klyubin, D. Polani, C.L. Nehaniv, All else being equal be empowered, in Proceedings of the 8th European Conference on Artificial Life (ECAL), ed. by M.S. Capcarrere, A.A. Freitas, P.J. Bentley, C.G. Johnson, J. Timmis, U.K. Kent, ser. Lecture Notes in Computer Science. vol. 3630, (Springer, Berlin, 2005), pp. 744–753Google Scholar
  9. 9.
    M. Lungarella, O. Sporns, Mapping information flow in sensorimotor networks. PLoS Comput. Biol. 2(10), e144 (2006)CrossRefGoogle Scholar
  10. 10.
    O. Kinouchi, M. Copelli, Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2(5), 348–351 (2006)CrossRefGoogle Scholar
  11. 11.
    J.J. Atick, Could information theory provide an ecological theory of sensory processing? Netw. Comput. Neural Syst. 3(2), 213 (1992)zbMATHCrossRefGoogle Scholar
  12. 12.
    M.A. Sánchez-Montañés, F.J. Corbacho, Towards a new information processing measure for neural computation, ed. by J. Dorronsoro. in Proceedings of the International Conference on Artificial Neural Networks (ICANN 2002), Madrid, 2002. Lecture Notes in Computer Science, vol. 2415 (Springer, Berlin, 2002), pp. 637–642.Google Scholar
  13. 13.
    T. Yamada, K. Aihara, Spatio-temporal complex dynamics and computation in chaotic neural networks, in Proceedings of the IEEE Symposium on Emerging Technologies and Factory Automation (ETFA’94), Tokyo, 1994, pp. 239–244.Google Scholar
  14. 14.
    M.H. Jakubowski, K. Steiglitz, R. Squier, Information transfer between solitary waves in the saturable Schrödinger equation. Phys. Rev. E 56(6), 7267 (1997)CrossRefGoogle Scholar
  15. 15.
    A. Adamatzky (ed.), Collision-Based Computing (Springer, London, 2002)zbMATHGoogle Scholar
  16. 16.
    D.E. Edmundson, R.H. Enns, Fully 3-dimensional collisions of bistable light bullets. Opt. Lett. 18, 1609–1611 (1993)CrossRefGoogle Scholar
  17. 17.
    S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, 2002)zbMATHGoogle Scholar
  18. 18.
    P. Gong, C. van Leeuwen, Distributed dynamical computation in neural circuits with propagating coherent activity patterns. PLoS Comput. Biol. 5(12), e1000611 (2009)CrossRefGoogle Scholar
  19. 19.
    P. Fernández, R.V. Solé, The role of computation in complex regulatory networks, in Scale-free Networks and Genome Biology, ed. by E.V. Koonin, Y.I. Wolf, G.P. Karev (Landes Bioscience, Georgetown, 2006), pp. 206–225Google Scholar
  20. 20.
    O. Miramontes, Order-disorder transitions in the behavior of ant societies. Complexity 1(3), 56–60 (1995)MathSciNetGoogle Scholar
  21. 21.
    J.P. Crutchfield, The calculi of emergence: computation, dynamics and induction. Phys. D 75(1–3), 11–54 (1994)zbMATHCrossRefGoogle Scholar
  22. 22.
    D.P. Feldman, C.S. McTague, J.P. Crutchfield, The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. Chaos 18(4), 043106 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Lloyd, Programming the Universe (Vintage Books, New York, 2006)Google Scholar
  24. 24.
    K. Wiesner, M. Gu, E. Rieper, V. Vedral, Information erasure lurking behind measures of complexity, 2009, arXiv:0905.2918v1. http://arxiv.org/abs/0905.2918
  25. 25.
    C.G. Langton, Computation at the edge of chaos: phase transitions and emergent computation. Phys. D 42(1–3), 12–37 (1990)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Mitchell, Computation in cellular automata: a selected review, in Non-Standard Computation, ed. by T. Gramss, S. Bornholdt, M. Gross, M. Mitchell, T. Pellizzari (Verlagsgesellschaft, Weinheim, 1998), pp. 95–140Google Scholar
  27. 27.
    M. Mitchell, A complex-systems perspective on the “computation vs. dynamics” debate in cognitive science, in Proceedings of the 20th Annual Conference of the Cognitive Science Society (Cogsci98), Madison, 1998, ed. by M.A. Gernsbacher, S.J. Derry, pp. 710–715.Google Scholar
  28. 28.
    S. Wolfram, Universality and complexity in cellular automata. Phys. D 10(1–2), 1–35 (1984)MathSciNetCrossRefGoogle Scholar
  29. 29.
    J.L. Casti, Chaos, Gödel and truth, in Beyond Belief: Randomness, Prediction and Explanation in Science, ed. by J.L. Casti, A. Karlqvist (CRC Press, Boca Raton, 1991), pp. 280–327Google Scholar
  30. 30.
    R.V. Solé, S. Valverde, Information transfer and phase transitions in a model of internet traffic. Physica A 289(3–4), 595–605 (2001)zbMATHCrossRefGoogle Scholar
  31. 31.
    S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, New York, 1993)Google Scholar
  32. 32.
    J.P. Crutchfield, K. Young, Inferring statistical complexity. Phys. Rev. Lett. 63(2), 105 (1989)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C.R. Shalizi, Causal architecture, complexity and self-organization in time series and cellular automata (University of Wisconsin-Madison, Ph.D. Dissertation, 2001)Google Scholar
  34. 34.
    J.P. Crutchfield, D.P. Feldman, Regularities unseen, randomness observed: levels of entropy convergence. Chaos 13(1), 25–54 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    A. Wuensche, Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complex 4(3), 47–66 (1999)MathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Lafusa, T. Bossomaier, Hyperplane localisation of self-replicating and other complex cellular automata rules, in Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 1 (IEEE Press, Edinburgh, 2005), pp. 844–849Google Scholar
  37. 37.
    M. Prokopenko, Guided self-organization. HFSP J. 3(5), 287–289 (2009)CrossRefGoogle Scholar
  38. 38.
    J.E. Hanson, J.P. Crutchfield, Computational mechanics of cellular automata: an example. Physica D 103(1–4), 169–189 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    C.R. Shalizi, R. Haslinger, J.-B. Rouquier, K.L. Klinkner, C. Moore, Automatic filters for the detection of coherent structure in spatiotemporal systems. Phys. Rev. E 73(3), 036104 (2006)MathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Von Neumann, Theory of self-reproducing automata, ed. by A.W. Burks (University of Illinois Press, Urbana, 1966).Google Scholar
  41. 41.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)MathSciNetGoogle Scholar
  42. 42.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)zbMATHCrossRefGoogle Scholar
  43. 43.
    D.J. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, Cambridge, 2003)zbMATHGoogle Scholar
  44. 44.
    A.S. Klyubin, D. Polani, C.L. Nehaniv, Representations of space and time in the maximization of information flow in the perception-action loop. Neural Comput. 19(9), 2387–2432 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    M. Prokopenko, F. Boschietti, A.J. Ryan, An information-theoretic primer on complexity, self-organization, and emergence. Complex 15(1), 11–28 (2009)CrossRefGoogle Scholar
  46. 46.
    J.E. Hanson, J.P. Crutchfield, The attractor-basin portait of a cellular automaton. J Stat. Phys. 66, 1415–1462 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    D. Peak, J.D. West, S.M. Messinger, K.A. Mott, Evidence for complex, collective dynamics and emergent, distributed computation in plants. Proc. Natl. Acad. Sci. USA 101(4), 918–922 (2004)CrossRefGoogle Scholar
  48. 48.
    M. Mitchell, J.P. Crutchfield, P.T. Hraber, Evolving cellular automata to perform computations: mechanisms and impediments. Physica D 75, 361–391 (1994)zbMATHCrossRefGoogle Scholar
  49. 49.
    K. Ishiguro, N. Otsu, M. Lungarella, Y. Kuniyoshi, Detecting direction of causal interactions between dynamically coupled signals. Phys. Rev. E 77(2), 026216 (2008)CrossRefGoogle Scholar
  50. 50.
    X.S. Liang, Information flow within stochastic dynamical systems. Phys. Rev. E 78(3), 031113 (2008)CrossRefGoogle Scholar
  51. 51.
    A.S. Ribeiro, S.A. Kauffman, J. Lloyd-Price, B. Samuelsson, J.E.S. Socolar, Mutual information in random Boolean models of regulatory networks. Phys. Rev. E 77(1), 011901 (2008)MathSciNetCrossRefGoogle Scholar
  52. 52.
    D.J. Watts, Six Degrees: The Science of a Connected Age (Norton, New York, 2003)Google Scholar
  53. 53.
    M. Mitchell, Complex systems: network thinking. Artif. Intell. 170(18), 1194–1212 (2006)CrossRefGoogle Scholar
  54. 54.
    M. Mitchell, Complexity: A Guided Tour (Oxford University Press, New York, 2009)zbMATHGoogle Scholar
  55. 55.
    F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, D.R. White, Economic networks: the new challenges. Science 325(5939), 422–425 (2009)MathSciNetzbMATHGoogle Scholar
  56. 56.
    A.-L. Barabási, Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CSIRO ICT CentreMarsfieldAustralia

Personalised recommendations