Skip to main content

Zero-Knowledge Proofs with Low Amortized Communication from Lattice Assumptions

  • Conference paper
Book cover Security and Cryptography for Networks (SCN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7485))

Included in the following conference series:

Abstract

We construct zero-knowledge proofs of plaintext knowledge (PoPK) and correct multiplication (PoPC) for the Regev encryption scheme with low amortized communication complexity. Previous constructions of both PoPK and PoPC had communication cost linear in the size of the public key (roughly quadratic in the lattice dimension, ignoring logarithmic factors). Furthermore, previous constructions of PoPK suffered from one of the following weaknesses: either the message and randomness space were restricted, or there was a super-polynomial gap between the size of the message and randomness that an honest prover chose and the size of which an accepting verifier would be convinced. The latter weakness was also present in the existent PoPC protocols.

In contrast, O(n) proofs (for lattice dimension n) in our PoPK and PoPC protocols have communication cost linear in the public key. Thus, we improve the amortized communication cost of each proof by a factor linear in the lattice dimension. Furthermore, we allow the message space to be ℤ p and the randomness distribution to be the discrete Gaussian, both of which are natural choices for the Regev encryption scheme. Finally, in our schemes there is no gap between the size of the message and randomness that an honest prover chooses and the size of which an accepting verifier is convinced.

Our constructions use the “MPC-in-the-head” technique of Ishai et al. (STOC 2007). At the heart of our constructions is a protocol for proving that a value is bounded by some publicly known bound. This uses Lagrange’s Theorem that states that any positive integer can be expressed as the sum of four squares (an idea previously used by Boudot (EUROCRYPT 2000)), as well as techniques from Cramer and Damgård (CRYPTO 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold fhe. Cryptology ePrint Archive: Report 2011/613 (2011)

    Google Scholar 

  3. Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)

    Google Scholar 

  4. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communication Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Beerliová-Trubíniová, Z., Hirt, M., Nielsen, J.B.: On the theoretical gap between synchronous and asynchronous mpc protocols. In: Richa, A.W., Guerraoui, R. (eds.) PODC, pp. 211–218. ACM (2010)

    Google Scholar 

  6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)

    Google Scholar 

  7. Bendlin, R., Damgård, I.: Threshold Decryption and Zero-Knowledge Proofs for Lattice-Based Cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic Encryption and Multiparty Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM (2012)

    Google Scholar 

  11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011)

    Google Scholar 

  12. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC, pp. 11–19 (1988)

    Google Scholar 

  13. Cramer, R., Damgård, I.: On the Amortized Complexity of Zero-Knowledge Protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Damgård, I., Orlandi, C.: Multiparty Computation for Dishonest Majority: From Passive to Active Security at Low Cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg (2010)

    Google Scholar 

  15. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. IACR Cryptology ePrint Archive, 2011:535 (2011)

    Google Scholar 

  16. Fine, B., Rosenberger, G.: Number Theory: An Introduction via the Distribution of Primes. Birkhäuser (2006)

    Google Scholar 

  17. Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended abstract). In: STOC, pp. 699–710. ACM (1992)

    Google Scholar 

  18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM (2008)

    Google Scholar 

  19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

    Google Scholar 

  20. Hirt, M., Maurer, U.M.: Robustness for Free in Unconditional Multi-party Computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous Multi-Party Computation with Quadratic Communication. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 473–485. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 21–30. ACM (2007)

    Google Scholar 

  23. Katz, J., Koo, C.-Y.: Round-Efficient Secure Computation in Point-to-Point Networks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 311–328. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) STOC, pp. 333–342. ACM (2009)

    Google Scholar 

  27. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Google Scholar 

  28. Rabin, M.O., Shallit, J.O.: Randomized algorithms in number theory. Communications on Pure and Applied Mathematics 39(S1), S239–S259 (1986)

    Article  MathSciNet  Google Scholar 

  29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005)

    Google Scholar 

  30. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damgård, I., López-Alt, A. (2012). Zero-Knowledge Proofs with Low Amortized Communication from Lattice Assumptions. In: Visconti, I., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2012. Lecture Notes in Computer Science, vol 7485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32928-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32928-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32927-2

  • Online ISBN: 978-3-642-32928-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics