Advertisement

Efficient Computational Prediction and Scoring of Human Protein-Protein Interactions Using a Novel Gene Expression Programming Methodology

  • Konstantinos Theofilatos
  • Christos Dimitrakopoulos
  • Maria Antoniou
  • Efstratios Georgopoulos
  • Stergios Papadimitriou
  • Spiros Likothanassis
  • Seferina Mavroudi
Part of the Communications in Computer and Information Science book series (CCIS, volume 311)

Abstract

Proteins and their interactions have been proven to play a central role in many cellular processes. Thus, many experimental methods have been developed for their prediction. These experimental methods are uneconomic and time consuming in the case of low throughput methods or inaccurate in the case of high throughput methods. To overcome these limitations, many computational methods have been developed to predict and score Protein-Protein Interactions (PPIs) using a variety of functional, sequential and structural data for each protein pair. Existing computational methods can still be enhanced in terms of classification performance and interpretability. In the present paper we present a novel Gene Expression Programming (GEP) algorithm, named as jGEPModelling 2.0, and apply it to the problem of PPI prediction and scoring. jGEPModelling2.0 is a variation of the classic GEP algorithm to make it suitable for the problem of PPI prediction and enhance its classification performance. To test its efficiency, we applied it to a public available dataset and compared it to two other state-of-the-art PPI prediction models. Experimental results proved that jGEPModelling2.0 outperformed existing methodologies in terms of classification performance and interpretability. (This paper is submitted for the CIAB2012 workshop).

Keywords

Protein Protein Interactions Human PPI scoring methods Gene Expression Programming Genetic Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Theofilatos, K.A., Dimitrakopoulos, C.M., Tsakalidis, A.K., Likothanassis, S.D., Papadimitriou, S.T., Mavroudi, S.P.: Computational Approaches for the Prediction of Protein-Protein Interactions: A Survey. Current Bioinformatics 6(4), 398–414 (2011)CrossRefGoogle Scholar
  2. 2.
    Rivas, J., Fortanillo, C.: Protein-Protein Interactions Essentials: Key Concepts to Building and Analyzing Interactome Networks. PLoS Computational Biololy 6(6), e1000807 (2010)Google Scholar
  3. 3.
    Breiman, L.: Random forests. Machine Learning J. 45, 5–32 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Liu, Y., Kim, I., Zhao, H.: Protein interaction predictions from diverse sources. Drug Discov. Today 13, 409–416 (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, X., Liu, M.: Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 21, 4394–4400 (2005)CrossRefGoogle Scholar
  6. 6.
    Thahir, M., Jaime, C., Madhavi, G.: Active learning for human protein-protein interaction prediction. BMC Bioinformatics 11(1), S57 (2010)Google Scholar
  7. 7.
    Wang, B.: Prediction of protein interactions by combining genetic algorithm with SVM method. In: IEEE Congress on Evolutionary Computation, pp. 320–325 (2007)Google Scholar
  8. 8.
    Wang, B., Chen, P., Zhang, J., et al.: Inferring Protein-Protein Interactions Using a Hybrid Genetic Algorithm/Support Vector Machine Method. Protein & Peptide Letters 17, 1079–1084 (2010)CrossRefGoogle Scholar
  9. 9.
    Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13(2), 87–129 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  11. 11.
    Antoniou, M.A., Georgopoulos, E.F., Theofilatos, K.A., Vassilopoulos, A.P., Likothanassis, S.D.: A Gene Expression Programming Environment for Fatigue Modeling of Composite Materials. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS (LNAI), vol. 6040, pp. 297–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Antoniou, M.A., Georgopoulos, E.F., Theofilatos, K.A., Likothanassis, S.D.: Forecasting Euro – United States Dollar Exchange Rate with Gene Expression Programming. In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) AIAI 2010. IFIP AICT, vol. 339, pp. 78–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Keshava, T., Goel, R., Kandasamy, K., et al.: Human Protein Reference Database–2009 update. Nucleic Acids Res. 37, D767–D772 (2009)Google Scholar
  14. 14.
    Ashburner, M., Ball, C., Blake, J., et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000)Google Scholar
  15. 15.
    Barrett, T., Troup, D., Wilhite, S., et al.: NCBI GEO: archive for functional genomics data sets -10 years on. Nucleic Acids Research 39, D1005–D1010 (2012)Google Scholar
  16. 16.
    Scott, M., Thomas, D., Hallet, M.: Predicting subcellular localization via protein motif co-occurrence. Genome Res. 14(10A), 1957–1966 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Konstantinos Theofilatos
    • 1
  • Christos Dimitrakopoulos
    • 1
  • Maria Antoniou
    • 1
  • Efstratios Georgopoulos
    • 2
  • Stergios Papadimitriou
    • 3
  • Spiros Likothanassis
    • 1
  • Seferina Mavroudi
    • 1
    • 4
  1. 1.Department of Computer Engineering and InformaticsUniversity of PatrasGreece
  2. 2.Technological Educational Institute of KalamataKalamataGreece
  3. 3.Department of Information ManagementTechnological Institute of KavalaGreece
  4. 4.Department of Social Work, School of Sciences of Health and CareTechnological Educational Institute of PatrasGreece

Personalised recommendations