Advertisement

Wind Power Forecasting to Minimize the Effects of Overproduction

  • Fernando Ribeiro
  • Paulo Salgado
  • João Barreira
Part of the Communications in Computer and Information Science book series (CCIS, volume 311)

Abstract

Wind power generation increases very rapidly in the past few years. The available wind energy is random due to the intermittency and variability of the wind speed. This poses difficulty in the energy dispatched and cause costs, as the wind energy is not accurately scheduled in advance. This paper presents a short-term wind speed forecasting that uses a Kalman filter approach to predict the power production of wind farms. The prediction uses wind speed values measured over a year in a site, on the case study of Portugal. A method to group wind speeds by their similarity in clusters is developed together with a Kalman filter model that uses each cluster as an input to perform the wind power forecasting.

Keywords

Clustering Kalman Filter Wind Power Forecasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Silva, B.: China e Índia fazem consumo mundial de energia disparar 40%. Diário Económico, 22–23 (2010)Google Scholar
  2. 2.
    Lange, M., Waldl, H.-P.: Assessing the uncetiainty of wind power predictions with regard to specific weather situations. In: Proc. of the 2001 European Wind Energy Association Conference, EWEC’UI, Copenhagen (Denmark), July 2-6, pp. 695–698 (2001)Google Scholar
  3. 3.
    Torres, J.L., García, A., De Blas, M., De Francisco, A.: Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Solar Energy 79(1), 65–77 (2005)CrossRefGoogle Scholar
  4. 4.
    Fonte, P.M., Quadrado, J.C.: ANN approach to WECS power forecast. In: 10th IEEE Conference on Emerging Technologies and Factory Automation, September 19-22, vol. 1, pp. 1069–1072 (2005)Google Scholar
  5. 5.
    Potter, C.W., Negnevitsky, M.: Very short-term wind forecasting for Tasmanian power generation. IEEE Transactions on Power Systems 21(2), 965–972 (2006)CrossRefGoogle Scholar
  6. 6.
    Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C.: The State-Of-The-Art in Short-Term Prediction of Wind Power: A Literature Overview, 2nd edn. ANEMOS.plus (2011)Google Scholar
  7. 7.
    REN - Rede Eléctrica Nacional, S.A. Caracterização da Rede Nacional de Transporte para efeitos de acesso à rede em 31 de Dezembro de 2010 (2011) Google Scholar
  8. 8.
    REN - Rede Eléctrica Nacional, S.A. A Energia Eólica em Portugal 2010 (2011) Google Scholar
  9. 9.
    OMEL Mercados A. V. Preços da tarifa de electricidade entre Espanha e Portugal, http://www.omel.es/files/flash/ResultadosMercado.swf (accessed in May 2, 2011)
  10. 10.
    Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks, 645–678 (2005)Google Scholar
  11. 11.
    Lee, C.R., Salcic, Z.: High-performance FPGA-based implementation of Kalman filter. Microprocessors and Microsystems 21, 257–265 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fernando Ribeiro
    • 1
  • Paulo Salgado
    • 1
  • João Barreira
    • 1
    • 2
  1. 1.ECT, Universidade de Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.INESC TEC (formerly INESC Porto)PortoPortugal

Personalised recommendations