Skip to main content

Automatic Landmark Location for Analysis of Cardiac MRI Images

  • Conference paper
Book cover Engineering Applications of Neural Networks (EANN 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 311))

  • 1574 Accesses

Abstract

This paper addresses the problem of automatic location of landmarks used for the analysis of MRI cardiac images. Typically the landmarks of shapes in MRI images are located manually which is a time consuming process requiring human expertise and attention to detail. As an alternative a number of researchers use shape modelling and image search techniques for locating the required landmarks automatically. Usually these techniques require human expertise for initializing the search and in addition they require high quality, noise free images so that the image-based landmark location is successful. With our work we propose the use of neural network methods for learning the geometry of sets of points so that it is possible to predict the positions of all required landmarks based on the positions of a small subset of the landmarks rather than using image-data during the process of landmark-location. As part of our work the performance of neural network methods like Multilayer Perceptrons, Radial Basis Functions and Support Vector Machines is evaluated. Quantitative and visual results demonstrate the potential of using such methods for locating the required landmarks on endo-cardial and epicardial landmarks of the left ventricle of MRI cardiac images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nachtomy, E., Cooperstein, R., Vaturi, M., Bosak, E., Vered, Z., Akselrod, S.: Automatic assessment of cardiac function from short-axis MRI: procedure and clinical evaluation. Magn. Reson. Imaging 16(4), 365–376 (1998)

    Article  Google Scholar 

  2. Frangi, A.F., Niessen, W., Viergever, M.A.: Three-dimensional modelling for functional analysis of cardiac images: a review. IEEE Trans. Med. Imaging 20(91), 2–25 (2001)

    Article  Google Scholar 

  3. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med. Imag. Anal. 12, 335–357 (2008)

    Article  Google Scholar 

  4. Eugene, C., Lin, M.D.: Cardiac MRI. Technical Aspects Primer (2011), http://emedicine.medscape.com/article/352250-overview

  5. Petitjeana, C., Dacherb, J.-N.: A review of segmentation methods in short axis cardiac MR images. Medical Image Analysis 15, 169–184 (2011)

    Article  Google Scholar 

  6. Cocosco, C.A., Niessen, W.J., Netsch, T., Vonken, E.J., Lund, G., Stork, A., Viergever, M.A.: Automatic image-driven segmentation of the ventricles in cardiac cine MRI. J. Magn. Reson. Imaging 28(2), 366–374 (2008)

    Article  Google Scholar 

  7. Mitchell, S.C., Lelieveldt, B.P., van der Geest, R.J., Bosch, H.G., Reiber, J.H., Sonka, M.: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans. Med. Imaging 20(5), 415–423 (2001)

    Article  Google Scholar 

  8. Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: Segmentation of the Left Ventricle From Cardiac MR Images Using a Subject-Specific Dynamical Model. IEEE T. on Medical Imaging 29(3), 660–687 (2010)

    Google Scholar 

  9. Hong, L., Huaifei, H., Xiangyang, X., Enmin, S.: Automatic LeftVentricleSegmentation in Cardiac MRI Using Topological Stable-State Thresholding and Region Restricted Dynamic Programming. Acad. Radiol. (2012), http://dx.doi.org/10.1016/j.acra.2012.02.011

  10. Stalidis, G., Maglaveras, N., Efstratiadis, S., Dimitriadis, A., Pappas, C.: Model based processing scheme for quantitative 4-D cardiac MRI analysis. IEEE Trans. Inf. Technol. Biomed. 6(1), 59–72 (2002)

    Article  Google Scholar 

  11. Rumelhart, D.E., Hinton, D.E., Williams, R.J.: Learning representations by back-propagation errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  12. Powell, M.J.D.: Radial basis functions for multivariable interpolation: A review. In: IMA Conference on Algorithms for the Approximation of Functions and Data, pp. 143–167. RMCS, Shrivenham (1985)

    Google Scholar 

  13. Vapnik, V.: Estimation of Dependences Based on Empirical Data. Moscow, Nauka (1982) (in Russian); English Translation: Springer, New York (1979)

    Google Scholar 

  14. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  15. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  16. Moler, M.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(4), 525–533 (1993)

    Article  Google Scholar 

  17. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  18. Gunn, S.R.: Support Vector Machines for Classification and Regression. Technical Report, Image Speech and Intelligent Systems Research Group, University of Southampton (1997)

    Google Scholar 

  19. Vapnik, V., Golowich, S., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Neural Information Processing Systems, pp. 169–184. MIT Press, Cambridge (1997)

    Google Scholar 

  20. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  21. Pérez-Cruz, F., Camps-Valls, G., Soria-Olivas, E., José Pérez-Ruixo, J., Figueiras-Vidal, A.R., Artés-Rodríguez, A.: Multi-dimensional Function Approximation and Regression Estimation. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 757–762. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Sánchez-Fernández, M., de Prado-Cumplido, M., Arenas-García, J., Pérez-Cruz, F.: SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems. IEEE Trans. Signal Proc. 52(8), 2298–2307 (2004)

    Article  Google Scholar 

  23. Tuia, D., Verrelst, J., Alonso, L., Pérez-Cruz, F., Camps-Valls, G.: Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation. IEEE Geoscience and Remote Sensing Letters 8(4), 804–808 (2011)

    Article  Google Scholar 

  24. Jayne, C., Lanitis, A., Christodoulou, C.: Neural network methods for one-to-many multi-valued problems. Neural Computing and Applications 20, 775–785 (2011)

    Article  Google Scholar 

  25. Gower, J.: Generalized procrustes analysis. Psychometrika 40(1), 33–51 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer (2001)

    Google Scholar 

  27. Cherkassky, V., Shao, X., Mulier, F., Vapnik, V.: Model Complexity Control for Regression Using VC Generalization Bounds. IEEE T. on Neural Networks 10(5), 1075–1089 (1999)

    Article  Google Scholar 

  28. Cherkassky, V., Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17(1), 113–126 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jayne, C., Lanitis, A., Christodoulou, C. (2012). Automatic Landmark Location for Analysis of Cardiac MRI Images. In: Jayne, C., Yue, S., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2012. Communications in Computer and Information Science, vol 311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32909-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32909-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32908-1

  • Online ISBN: 978-3-642-32909-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics