Advertisement

Analysis of Electricity Consumption Profiles by Means of Dimensionality Reduction Techniques

  • Antonio Morán
  • Juan J. Fuertes
  • Miguel A. Prada
  • Serafín Alonso
  • Pablo Barrientos
  • Ignacio Díaz
Part of the Communications in Computer and Information Science book series (CCIS, volume 311)

Abstract

The analysis of the daily electricity consumption profile of a building and its correlation with environmental factors make it possible to estimate its electricity demand. As an alternative to the traditional correlation analysis, a new approach is proposed to provide a detailed and visual analysis of the correlations between consumption and environmental variables. Since consumption profiles are normally characterized by many electrical variables, i.e., a high dimensional space, it is necessary to apply dimensionality reduction techniques that enable a projection of these data onto an easily interpretable 2D space. In this paper, several dimensionality reduction techniques are compared in order to determine the most appropriate one for the stated purpose. Later, the proposed approach uses the chosen algorithm to analyze the profiles of two public buildings located at the University of León.

Keywords

Dimensionality reduction information visualization electricity consumption profiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fay, D., Ringwood, J.V., Condon, M., Kelly, M.: 24-h electrical load data-a sequential or partitioned time series. Neurocomputing 55(3-4), 469–498 (2003)CrossRefGoogle Scholar
  2. 2.
    Nizar, A.H., Dong, Z.Y., Jalaluddin, M., Raffles, M.: Load profiling method in detecting non-technical loss activities in a power utility. In: IEEE International Power and Energy Conference, pp. 82–87 (2006)Google Scholar
  3. 3.
    Kendall, M.G.: Rank Correlation Methods. Charles Griffin and Company (1948)Google Scholar
  4. 4.
    Lee, J.A., Lendasse, A., Verleysen, M.: Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing 57, 49–76 (2004)CrossRefGoogle Scholar
  5. 5.
    Kruskal, J.B., Wish, M.: Multidimensional scaling. Sage university paper series on quantitative application in the social sciences, pp. 7–11 (1978)Google Scholar
  6. 6.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  7. 7.
    Sammon Jr., J.W.: A non-linear mapping for data structure analysis. IEEE Transactions on Computers 18, 401–409 (1969)CrossRefGoogle Scholar
  8. 8.
    Demartines, P., Hérault, J.: Curvilinear component analysis: a self organizing neural network for non linear mapping of data sets. IEEE Transactions on Neural Networks 8, 148–154 (1997)CrossRefGoogle Scholar
  9. 9.
    Kohonen, T.: The neural phonetic typewriter. Computer, 11–22 (Marzo 1988)Google Scholar
  10. 10.
    Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A robust nonlinear projection method, pp. 13–20 (2000)Google Scholar
  11. 11.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  12. 12.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14, pp. 585–591. MIT Press (2001)Google Scholar
  13. 13.
    Hinton, G.E., Roweis, S.: Stochastic neighbor embedding. In: Becker, T.S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 833–840. MIT Press, Cambridge (2002)Google Scholar
  14. 14.
    Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9, 2579–2605 (2008)zbMATHGoogle Scholar
  15. 15.
    Cook, J., Sutskever, I., Mnih, A., Hinton, G.: Visualizing similarity data with a mixture of maps. In: Proceddings of the 11th International Conference on Artificial Intelligence and Statistics, vol. 2, pp. 67–74 (2007)Google Scholar
  16. 16.
    Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Information Science and Statistics. Springer (2007)Google Scholar
  17. 17.
    Venna, J., Kaski, S.: Comparison of visualization methods for an atlas of gene expression data sets. Information Visualization 6, 139–154 (2007)CrossRefGoogle Scholar
  18. 18.
    Van der Maaten, L.: Learning a parametric embedding by preserving local structure. In: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AI-STATS), vol. 5, pp. 384–391. JMLR W&CP (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Antonio Morán
    • 1
  • Juan J. Fuertes
    • 1
  • Miguel A. Prada
    • 1
  • Serafín Alonso
    • 1
  • Pablo Barrientos
    • 1
  • Ignacio Díaz
    • 2
  1. 1.SUPPRESS Research GroupEsc. de Ing. Industrial e InformáticaLeónSpain
  2. 2.Dept. de Ing. Elétrica, Electrónica, de Computadores y SistemasUniversidad de OviedoGijónSpain

Personalised recommendations