Skip to main content

Non-autonomous Functional Differential Equations and Applications

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2065))

Abstract

This chapter deals with the applications of dynamical systems techniques to the study of non-autonomous, monotone and recurrent functional differential equations. After introducing the basic concepts in the theory of skew-product semiflows and the appropriate topological dynamics techniques, we study the long-term behavior of relatively compact trajectories by describing the structure of minimal and omega-limit sets, as well as the attractors. Both the cases of finite and infinite delay are considered. In particular, we show the relevance of uniform stability in this study. Special attention is also paid to the almost periodic case, in which the presence of almost periodic and almost automorphic dynamics is analyzed. Some applications of these techniques to the study of neural networks, compartmental systems and certain biochemical control circuit models are shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.I. Alonso, R. Obaya, The structure of the bounded trajectories set of a scalar convex differential equation. Proc. Roy. Soc. Edinb. 133 A, 237–263 (2003)

    Google Scholar 

  2. A.I. Alonso, R. Obaya, A.M. Sanz, A note on non-autonomous scalar functional differential equations with small delay. C. R. Acad. Sci. Paris, Ser. I 340, 155–160 (2005)

    Google Scholar 

  3. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Google Scholar 

  4. L. Amerio, G. Prouse, in Almost-Periodic Functions and Functional Equations. The University Series in Higher Mathematics (Van Nostrand Reinhold Company, New York, 1971)

    Google Scholar 

  5. L. Arnold, I.D. Chueshov, Order-preserving random dynamical systems: equilibria, attractors, applications. Dynam. Stabil. Syst. 13, 265–280 (1998)

    Google Scholar 

  6. L. Arnold, I.D. Chueshov, Cooperative random and stochastic differential equations. Discrete Contin. Dynam. Syst. 7, 1–33 (2001)

    Google Scholar 

  7. A.S. Besicovitch, Almost Periodic Functions (Dover, New York, 1954)

    Google Scholar 

  8. K. Bjerklöv, Positive Lyapunov exponent and minimality for the continuous 1-d quasi-periodic Schrödinger equations with two basic frequencies. Ann. Henri Poincaré 8(4), 687–730 (2007)

    Google Scholar 

  9. S. Bochner, A new approach to almost periodicity. Proc. Natl. Acad. Sci. USA 48, 2039–2043 (1962)

    Google Scholar 

  10. H. Bohr, Zur Theorie der Fastperiodischen Funktionen. Acta Math. 46(1), 29–127 (1925)

    Google Scholar 

  11. H. Bohr, Almost Periodic Functions (Chelsea Publishing Company, New York, 1947)

    Google Scholar 

  12. T. Caraballo, D. Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition. I. J. Differ. Equat. 246(1), 108–128 (2009)

    Google Scholar 

  13. T. Caraballo, D. Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition. II. J. Differ. Equat. 246(3), 1164–1186 (2009)

    Google Scholar 

  14. F. Cao, M. Gyllenberg, Y. Wang, Asymptotic behaviour of comparable skew-product semiflows with applications. Proc. Lond. Math. Soc. 103, 271–293 (2011)

    Google Scholar 

  15. A. Chen, J. Cao, Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients. Appl. Math. Comp. 134, 125–140 (2003)

    Google Scholar 

  16. C. Chicone, Y. Latushkin, in Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical Surveys and Monographs, vol. 70 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  17. G. Choquet, in Lectures on Analysis. Integration and Topological Vector Spaces. Mathematics Lecture Notes, vol. I (Benjamin, New York, 1969)

    Google Scholar 

  18. I.D. Chueshov, in Monotone Random Systems. Theory and Applications. Lecture Notes in Mathematics, vol. 1779 (Springer, Berlin, 2002)

    Google Scholar 

  19. C.C. Conley, R.A. Miller, Asymptotic stability without uniform stability: almost periodic coefficients. J. Differ. Equat. 1, 333–336 (1965)

    Google Scholar 

  20. C. Corduneanu, Almost Periodic Functions (Chelsea Publishing Company, New York, 1968)

    Google Scholar 

  21. R.D. Driver, Linear differential systems with small delays. J. Differ. Equat. 21, 149–167 (1976)

    Google Scholar 

  22. R. Ellis, Lectures on Topological Dynamics (Benjamin, New York, 1969)

    Google Scholar 

  23. R. Fabbri, R. Johnson, F. Mantellini, A nonautonomous saddle-node bifurcation pattern. Stochast. Dynam. 4(3), 335–350 (2004)

    Google Scholar 

  24. M. Fan, D. Ye, Convergence dynamics and pseudo almost periodicity of a class of nonautonomous RFDEs with applications. J. Math. Anal. Appl. 309, 598–625 (2005)

    Google Scholar 

  25. J. Favard, Leçons sur les Fonctions Presque-périodiques (Gauthier-Villars, Paris, 1933)

    Google Scholar 

  26. A.M. Fink, in Almost Periodic Differential Equations. Lecture Notes in Mathematics, vol. 377 (Springer, Berlin, 1974)

    Google Scholar 

  27. A.M. Fink, P.O. Frederickson, Ultimately boundedness does not imply almost periodicity. J. Differ. Equat. 9, 280–284 (1971)

    Google Scholar 

  28. K. Gopalsamy, X.Z. He, Stability in asymmetric Hopfield nets with transmission delays. Phys. D 76, 344–358 (1994)

    Google Scholar 

  29. I. Györi, Connections between compartmental systems with pipes and integro-differential equations. Math. Model. 7, 1215–1238 (1986)

    Google Scholar 

  30. I. Györi, J. Eller, Compartmental systems with pipes. Math. Biosci. 53, 223–247 (1981)

    Google Scholar 

  31. J.K. Hale, Ordinary Differential Equations, 2nd edn. (Kreiger Publ. Co., Mabar Florida, 1980)

    Google Scholar 

  32. J.K. Hale, S.M. Verduyn Lunel, in Introduction to Functional Differential Equations. Applied Mathematical Sciences, vol. 99 (Springer, Berlin, 1993)

    Google Scholar 

  33. Y. Hino, S. Murakami, T. Naiko, in Functional Differential Equations with Infinite Delay. Lecture Notes in Mathematics, vol. 1473 (Springer, Berlin, 1991)

    Google Scholar 

  34. M. Hirsch, Systems of differential equations which are competitive or cooperative I: limit sets. SIAM J. Appl. Math. 13, 167–179 (1982)

    Google Scholar 

  35. M. Hirsch, Systems of differential equations which are competitive or cooperative II: convergence almost everywhere. SIAM J. Math. Anal. 16, 423–439 (1985)

    Google Scholar 

  36. J.J. Hopfield, Neural networks and physical systems with emegernt collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

    Google Scholar 

  37. J.J. Hopfield, Neurons with grade response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)

    Google Scholar 

  38. H. Hu, J. Jiang, Translation-invariant monotone systems II: Almost periodic/automorphic case. Proc. Am. Math. Soc. 138(11), 3997–4007 (2010)

    Google Scholar 

  39. W. Huang, Y. Yi, Almost periodically forced circle flows. J. Funct. Anal. 257(3), 832–902 (2009)

    Google Scholar 

  40. X. Huang, J. Cao, D.W.C. Ho, Existence and attractivity of almost periodic solutions for recurrent neural networks with unbounded delays and variable coefficients. Nonlinear Dynam. 45, 337–351 (2006)

    Google Scholar 

  41. J.A. Jacquez, C.P. Simon, Qualitative theory of compartmental systems. SIAM Rev. 35(1), 43–49 (1993)

    Google Scholar 

  42. J.A. Jacquez, C.P. Simon, Qualitative theory of compartmental systems with lags. Math. Biosci. 180, 329–362 (2002)

    Google Scholar 

  43. H. Jiang, L. Zhang, Z. Teng, Existence and global exponential stability of almost periodic solution for cellular neural networks with variable coefficients and time-varying delays. IEEE Trans. Neural Networks 16, 1340–1351 (2005)

    Google Scholar 

  44. J. Jiang, X.-Q. Zhao, Convergence in monotone and uniformly stable skew-product semiflows with applications. J. Reine Angew. Math. 589, 21–55 (2005)

    Google Scholar 

  45. R. Johnson, On a Floquet theory for almost-periodic, two-dimensional linear systems. J. Differ. Equat. 37, 184–205 (1980)

    Google Scholar 

  46. R. Johnson, A linear, almost periodic equation with an almost automorphic solution. Proc. Am. Math. Soc. 82(2), 199–205 (1981)

    Google Scholar 

  47. R. Johnson, Bounded solutions of scalar, almost periodic linear equations. Illinois J. Math. 25(4), 632–643 (1981)

    Google Scholar 

  48. R. Johnson, On almost-periodic linear differential systems of Millions̆c̆ikov and Vinograd. J. Math. Anal. Appl. 85, 452–460 (1982)

    Google Scholar 

  49. R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J. Differ. Equat. 61(1), 54–78 (1986)

    Google Scholar 

  50. R. Johnson, F. Mantellini, Non-autonomous differential equations, in Dynamical Systems. Lecture Notes in Mathematics, vol. 1822 (Springer, Berlin, 2003), pp. 173–229

    Google Scholar 

  51. R. Johnson, S. Novo, R. Obaya, Ergodic properties and Weyl M-functions for linear Hamiltonian systems. Proc. Roy. Soc. Edinb. 130A, 1045–1079 (2000)

    Google Scholar 

  52. R. Johnson, S. Novo, R. Obaya, An ergodic and topological approach to disconjugate linear Hamiltonian systems. Illinois J. Math. 45, 1045–1079 (2001)

    Google Scholar 

  53. A. Jorba, C. Núñez, R. Obaya, J.C. Tatjer, Old and new results on strange nonchaotic attractors. Int. J. Bifur. Chaos Appl. Sci. Eng. 17(11), 3895–3928 (2007)

    Google Scholar 

  54. M.A. Krasnoselskii, J.A. Lisfshits, A.V. Sobolev, Positive Linear Systems: The Method of Positive Operators. Sigma Series in Appl. Math., vol. 5 (Heldermann, Berlin, 1989)

    Google Scholar 

  55. U. Krause, P. Ranft, A limit set trichotomy for monotone nonlinear dynamical systems. Nonlinear Anal. 19, 375–392 (1992)

    Google Scholar 

  56. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics (Academic, New York, 1993)

    Google Scholar 

  57. B. Levitan, V. Zhikov, Almost Periodic Functions and Differential Equations (Cambridge University Press, Cambridge, 1982)

    Google Scholar 

  58. J. Liang, J. Cao, Boundedness and stability for recurrent neural networks with variable coefficients and time-varying delays. Phys. Lett. A 318, 53–64 (2003)

    Google Scholar 

  59. R. Mañé, Ergodic Theory and Differentiable Dynamics (Springer, Berlin, 1987)

    Google Scholar 

  60. C.M. Marcus, R.M. Westervelt, Stability of analog neural networks with delay. Phys. Rev. A 39, 347–359 (1989)

    Google Scholar 

  61. N.G. Markey, M.E., Paul, Almost automorphic symbolic minimal sets without unique ergodicity. Israel J. Math. 34, 259–272 (1979)

    Google Scholar 

  62. J. Mawhin, First order ordinary differential equations with several periodic solutions. Z. Angew. Math. Phys. 38, 257–265 (1987)

    Google Scholar 

  63. A. Miller, A relation between almost automorphic and Levitan almost periodic point in compact minimal flows. J. Dynam. Differ. Equat. 20(2), 519–529 (2008)

    Google Scholar 

  64. R. Miller, Almost periodic differential equations as dynamical systems with applications to the existence of almost periodic solutions. J. Differ. Equat. 1, 337–345 (1965)

    Google Scholar 

  65. V.M. Millions̆c̆ikov, Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients. Differ. Uravn. 4(3), 391–396 (1968)

    Google Scholar 

  66. S. Mohamad, Convergence dynamics of delayed Hopfield-type neural networks under almost periodic stimuli. Acta Appl. Math. 76, 117–135 (2003)

    Google Scholar 

  67. V. Muñoz-Villarragut, S. Novo, R. Obaya, Neutral functional differential equations with applications to compartmental systems. SIAM J. Math. Anal. 40(3), 1003–1028 (2008)

    Google Scholar 

  68. V. Nemytskii, V. Stepanoff, Qualitative Theory of Differential Equations (Princeton University Press, Princeton, 1960)

    Google Scholar 

  69. T.Y. Nguyen, T.S. Doan, T. Jäger, S. Siegmund, Nonautonomous saddle-node bifurcations in the quasiperiodically forced logistic map. Int. J. Bifur. Chaos Appl. Sci. Eng. 21(5), 1427–1438 (2011)

    Google Scholar 

  70. S. Novo, R. Obaya, Strictly ordered minimal subsets of a class of convex monotone skew-product semiflows. J. Differ. Equat. 196, 249–288 (2004)

    Google Scholar 

  71. S. Novo, R. Obaya, A.M. Sanz, Almost periodic and almost automorphic dynamics for scalar convex differential equations. Israel J. Math. 144, 157–189 (2004)

    Google Scholar 

  72. S. Novo, C. Núñez, R. Obaya, Almost automorphic and almost periodic dynamics for quasimonotone non-autonomous functional differential equations. J. Dynam. Differ. Equat. 17(3), 589–619 (2005)

    Google Scholar 

  73. S. Novo, R. Obaya, A.M. Sanz, Attractor minimal sets for cooperative and strongly convex delay differential systems. J. Differ. Equat. 208(1), 86–123 (2005)

    Google Scholar 

  74. S. Novo, R. Obaya, A.M. Sanz, Attractor minimal sets for non-autonomous delay functional differential equations with applications for neural networks. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2061), 2767–2783 (2005)

    Google Scholar 

  75. S. Novo, R. Obaya, A.M. Sanz, Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete Contin. Dynam. Syst. 18(2–3), 517–536 (2007)

    Google Scholar 

  76. S. Novo, R. Obaya, A.M. Sanz, Stability and extensibility results for abstract skew-product semiflows. J. Differ. Equat. 235(2), 623–646 (2007)

    Google Scholar 

  77. S. Novo, R., Obaya, V.M. Villarragut, Exponential ordering for nonautonomous neutral functional differential equations. SIAM J. Math. Anal. 41(3), 1025–1053 (2009)

    Google Scholar 

  78. C. Núñez, R. Obaya, A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete Contin. Dynam. Syst. B 9(3–4), 701–730 (2008)

    Google Scholar 

  79. C. Núñez, R. Obaya, A.M. Sanz, Global attractivity in concave or sublinear monotone infinite delay differential equations. J. Differ. Equat. 246, 3332–3360 (2009)

    Google Scholar 

  80. C. Núñez, R. Obaya, A.M. Sanz, Minimal sets in monotone and sublinear skew-product semiflows I: The general case. J. Differ. Equat. 248, 1879–1897 (2010)

    Google Scholar 

  81. C. Núñez, R. Obaya, A.M. Sanz, Minimal sets in monotone and sublinear skew-product semiflows II: Two-dimensional systems of differential equations. J. Differ. Equat. 248, 1899–1925 (2010)

    Google Scholar 

  82. C. Núñez, R. Obaya, A.M. Sanz, Minimal sets in monotone and concave skew-product semiflows I: A general theory. J. Differ. Equat. 252(10), 5492–5517 (2012)

    Google Scholar 

  83. C. Núñez, R. Obaya, A.M. Sanz, Minimal sets in monotone and concave skew-product semiflows II: Two-dimensional systems of differential equations. J. Differ. Equat. 252(5), 3575–3607 (2012)

    Google Scholar 

  84. R. Obaya, V.M. Villarragut, Exponential ordering for neutral functional differential equations with non-autonomous linear D-operator. J. Dynam. Differ. Equat. 23(3), 695–725 (2011)

    Google Scholar 

  85. Z. Opial, Sur une équation différentielle presque-périodique sans solution presque-périodic. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 9, 673–676 (1961)

    Google Scholar 

  86. R. Ortega, M. Tarallo, Almost periodic equations and conditions of Ambrosetti-Prodi type. Math. Proc. Camb. Philos. Soc. 135(2), 239–254 (2003)

    Google Scholar 

  87. R. Ortega, M. Tarallo, Almost periodic upper and lower solutions. J. Differ. Equat. 193, 343–358 (2003)

    Google Scholar 

  88. R. Ortega, M. Tarallo, Almost periodic linear differential equations with non-separated solutions. J. Funct. Anal. 237(2), 402–426 (2006)

    Google Scholar 

  89. R. Phelps, in Lectures on Choquet’s Theory. Van Nostrand Mathematical Studies (American Book Co., New York, 1966)

    Google Scholar 

  90. P. Poláčik, I. Tereščák, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations. J. Dynam. Differ. Equat. 5(2), 279–303 (1993)

    Google Scholar 

  91. R.J. Sacker, G.R. Sell, in Lifting Properties in Skew-Products Flows with Applications to Differential Equations. Mem. Amer. Math. Soc., vol. 190 (American Mathematical Society, Providence, 1977)

    Google Scholar 

  92. R.J. Sacker, G.R. Sell, A spectral theory for linear differential systems. J. Differ. Equat. 27, 320–358 (1978)

    Google Scholar 

  93. A.M. Sanz, Dinámicas casi periódica y casi automórfica en sistemas diferenciales monótonos y convexos. Ph.D. Dissertation, Universidad de Valladolid, 2004

    Google Scholar 

  94. J.F. Selgrade, Asymptotic behavior of solutions to single loop positive feedback systems. J. Differ. Equat. 38, 80–103 (1980)

    Google Scholar 

  95. G.R. Sell, Non-autonomous differential equations and topological dynamics I, II. Trans. Am. Math. Soc. 127, 241–283 (1967)

    Google Scholar 

  96. G.R. Sell, Topological Dynamics and Ordinary Differential Equations (Van Nostrand-Reinhold, London, 1971)

    Google Scholar 

  97. W. Shen, Y. Yi, Asymptotic almost periodicity of scalar parabolic equations with almost periodic time dependence. J. Differ. Equat. 122, 373–397 (1995)

    Google Scholar 

  98. W. Shen, Y. Yi, Dynamics of almost periodic scalar parabolic equations. J. Differ. Equat. 122, 114–136 (1995)

    Google Scholar 

  99. W. Shen, Y. Yi, On minimal sets of scalar parabolic equations with skew-product structures. Trans. Am. Math. Soc. 347(11), 4413–4431 (1995)

    Google Scholar 

  100. W. Shen, Y. Yi, Ergodicity of minimal sets in scalar parabolic equations. J. Dynam. Differ. Equat. 8(2), 299–323 (1996)

    Google Scholar 

  101. W. Shen, Y. Yi, in Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows. Mem. Amer. Math. Soc., vol. 647 (American Mathematical Society, Providence, 1998)

    Google Scholar 

  102. W. Shen, X.-Q. Zhao, Convergence in almost periodic cooperative systems with a first integral. Proc. Am. Math. Soc. 133, 203–212 (2004)

    Google Scholar 

  103. H.L. Smith, Cooperative systems of differential equations with concave nonlinearities. Nonlinear Anal. 10, 1037–1052 (1986)

    Google Scholar 

  104. H.L. Smith, Monotone semiflows generated by functional differential equations. J. Differ. Equat. 66, 420–442 (1987)

    Google Scholar 

  105. H.L. Smith, Monotone Dynamical Systems. An introduction to the Theory of Competitive and Cooperative Systems (American Mathematical Society, Providence, 1995)

    Google Scholar 

  106. H.L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics, 57 (Springer, New York, 2011)

    Google Scholar 

  107. H.L. Smith, H.R. Thieme, Strongly order preserving semiflows generated by functional-differential equations. J. Differ. Equat. 93(2), 332–363 (1991)

    Google Scholar 

  108. P. Takáç, Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications to biology. Nonlinear Anal. 14(1), 35–42 (1990)

    Google Scholar 

  109. P. Takáç, Linearly stable subharmonic orbits in strongly monotone time-periodic dynamical systems. Proc. Am. Math. Soc. 115(3), 691–698 (1992)

    Google Scholar 

  110. P. Van den Driessche, X. Zou, Global attractivity in delayed Hopfield neural networks models. SIAM J. Appl. Math. 58(6), 1878–1890 (1998)

    Google Scholar 

  111. P. Van den Driessche, J. Wu, X. Zou, Stabilization role of inhibitory self-connections in a delayed neural network. Phys. D 150, 84–90 (2001)

    Google Scholar 

  112. W.A. Veech, Almost automorphic functions on groups. Am. J. Math. 87, 719–751 (1965)

    Google Scholar 

  113. W.A. Veech, Properties of minimal functions on abelian groups. Am. J. Math. 91, 415–441 (1969)

    Google Scholar 

  114. W.A. Veech, Topological dynamics. Bull. Am. Math. Soc. 83, 775–830 (1977)

    Google Scholar 

  115. R.E. Vinograd, A problem suggested by N.P. Erugin. Differ. Uravn. 11(4), 632–638 (1975)

    Google Scholar 

  116. J. Wu, Global dynamics of strongly monotone retarded equations with infinite delay. J. Integr. Equat. Appl. 4(2), 273–307 (1992)

    Google Scholar 

  117. J. Wu, in Introduction to Neural Dynamics and Signal Transmission Delay. Nonlinear Analysis and Aplications, vol. 6 (Walter de Gruyter, Berlin, 2001)

    Google Scholar 

  118. J. Wu, H.I. Freedman, Monotone semiflows generated by neutral functional differential equations with application to compartmental systems. Can. J. Math. 43(5), 1098–1120 (1991)

    Google Scholar 

  119. Y. Yi, On almost automorphic oscillations, in Differences and Differential Equations. Fields Inst. Commun., vol. 42 (American Mathematical Society, Providence, 2004), pp. 75–99

    Google Scholar 

  120. H. Zhao, Global asymptotic stability of Hopfield neural networks involving distributed delays. Neural Netw. 17, 47–53 (2004)

    Google Scholar 

  121. X.-Q. Zhao, Global attractivity in monotone and subhomogeneous almost periodic systems. J. Differ. Equat. 187, 494–509 (2003)

    Google Scholar 

Download references

Acknowledgements

The authors were partly supported by Junta de Castilla y León under project VA060A09, and Ministerio de Ciencia e Innovación under project MTM2008-00700/MTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Novo .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Novo, S., Obaya, R. (2013). Non-autonomous Functional Differential Equations and Applications. In: Stability and Bifurcation Theory for Non-Autonomous Differential Equations. Lecture Notes in Mathematics(), vol 2065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32906-7_4

Download citation

Publish with us

Policies and ethics