Skip to main content

Iptycenes and Their Derivatives in Material Science

  • Chapter
  • First Online:
  • 1080 Accesses

Abstract

In general, all compounds with liquid crystalline properties would be consisted of a rigid core and long flexible chains, which blocked the formation of completely ordered system. Thus, the systems containing the rigid iptycene core and the flexible long alkyl or alkoxy chains seemed to be potential candidates as liquid crystalline materials (Chem Soc Rev 38:3301–3316, 2009). In the early 1990s, Simon and Norvez (J Chem Soc Chem Commun 1990:3407–3412, 1990; J Org Chem 58:2414–2418, 1993) synthesized triptycene derivative 1 containing five long paraffinic chains (Fig. 8.1) and found that it showed the mesomorphic behavior at room temperature. The rigid triptycene core of this pentasubstituted derivative (1) regularly arrayed in a hexagonal lamellar structure, along with the long chains extending above and below the layer, which was indicated by its X-ray diffraction patterns. The triptycene derivative 1 exhibited the mesomorphic property at room temperature, probably because the cell areas were big enough to hold the chains at disordered state. On the other hand, it was found that the triptycene derivative 2 (Fig. 8.1) with six alkoxy chains and an aromatic core would form the symmetric compatible lamellar lattices. However, the cell areas in these lamellar lattices were too small to be available for all chains in a disordered state, which led to the crystalline state instead of the mesomorphic state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chong JH, MacLachlan MJ (2009) Iptycenes in supramolecular and materials chemistry. Chem Soc Rev 38(12):3301–3315

    Article  CAS  Google Scholar 

  2. Jiang Y, Chen CF (2011) Recent developments in synthesis and applications of triptycene and pentiptycene derivatives. Eur J Org Chem 2011(32):6377–6403

    Article  CAS  Google Scholar 

  3. Norvez S, Simon J (1990) Epitaxygens: mesophases based on the triptycene molecular subunit. J Chem Soc Chem Commun 1990(20):1398–1399

    Article  Google Scholar 

  4. Norvez S (1993) Liquid-crystalline triptycene derivatives. J Org Chem 58(9):2414–2418

    Article  CAS  Google Scholar 

  5. Long TM, Swager TM (2002) Triptycene-containing bis(phenylethynyl) benzene nematic liquid crystals. J Mater Chem 12(12):3407–3412

    Article  CAS  Google Scholar 

  6. Swager TM (2008) Iptycenes in the design of high performance polymers. Acc Chem Res 41(9):1181–1189

    Article  CAS  Google Scholar 

  7. Long TM, Swager TM (2001) Minimization of free volume: alignment of triptycenes in liquid crystals and stretched polymers. Adv Mater 13(8):601–604

    Article  CAS  Google Scholar 

  8. Long TM, Swager TM (2002) Using “internal free volume” to increase chromophore alignment. J Am Chem Soc 124(15):3826–3827

    Article  CAS  Google Scholar 

  9. Zhu ZG, Swager TM (2002) Conjugated polymer liquid crystal solutions: control of conformation and alignment. J Am Chem Soc 124(33):9670–9671

    Article  CAS  Google Scholar 

  10. Araoka F, Shin KC, Takanishi Y, Ishikawa K, Takezoe H, Zhu ZG, Swager TM (2003) How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing. J Appl Phys 94(1):279–283

    Article  CAS  Google Scholar 

  11. Nesterov EE, Zhu ZG, Swager TM (2005) Conjugation enhancement of intramolecular exciton migration in poly(p-phenylene ethynylene)s. J Am Chem Soc 127(28):10083–10088

    Article  CAS  Google Scholar 

  12. Hoogboom J, Swager TM (2006) Increased alignment of electronic polymers in liquid crystals via hydrogen bonding extension. J Am Chem Soc 128(47):15058–15059

    Article  CAS  Google Scholar 

  13. Ohira A, Swager TM (2007) Ordering of poly(p-phenylene ethynylene)s in liquid crystals. Macromolecules 40(1):19–25

    Article  CAS  Google Scholar 

  14. Long TM, Swager TM (2003) Molecular design of free volume as a route to low-κ dielectric materials. J Am Chem Soc 125(46):14113–14119

    Article  CAS  Google Scholar 

  15. Amara JP, Swager TM (2004) Incorporation of internal free volume: synthesis and characterization of iptycene-elaborated poly(butadiene)s. Macromolecules 37(8):3068–3070

    Article  CAS  Google Scholar 

  16. Sydlik SA, Chen Z, Swager TM (2011) Triptycene polyimides: soluble polymers with high thermal stability and low refractive indices. Macromolecules 44(4):976–980

    Article  CAS  Google Scholar 

  17. Hsiao SH, Wang HM, Chen WJ, Lee TM, Leu CM (2011) Synthesis and properties of novel triptycene-based polyimides. J Polym Sci Polym Chem 49(14):3109–3120

    Article  CAS  Google Scholar 

  18. Chen Z, Bouffard J, Kooi SE, Swager TM (2008) Highly emissive iptycene-fluorene conjugated copolymers: synthesis and photophysical properties. Macromolecules 41(18):6672–6676

    Article  CAS  Google Scholar 

  19. Chou HH, Shih HH, Cheng CH (2010) Triptycene derivatives as high-Tg host materials for various electrophosphorescent devices. J Mater Chem 20(4):798–805

    Article  CAS  Google Scholar 

  20. Polishak BM, Huang S, Luo J, Shi Z, Zhou XH, Hsu A, Jen AKY (2011) A triptycene-containing chromophore for improved temporal stability of highly efficient guest–host electrooptic polymers. Macromolecules 44(6):1261–1265

    Article  CAS  Google Scholar 

  21. Ghanem BS, Msayib KJ, McKeown NB, Harris KDM, Pan Z, Budd PM, Butler A, Selbie J, Book D, Walton A (2007) A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chem Commun 2007(1):67–69

    Article  Google Scholar 

  22. Horvath G, Kawazoe K (1983) Method for the calculation of effective pore-size distribution in molecular-sieve carbon. J Chem Eng Jpn 16(6):470–475

    Article  CAS  Google Scholar 

  23. Ghanem BS, Hashem M, Harris KDM, Msayib KJ, Xu M, Budd PM, Chaukura N, Book D, Tedds S, Walton A, McKeown NB (2010) Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption. Macromolecules 43(12):5287–5294

    Article  CAS  Google Scholar 

  24. Chong JH, Ardakani SJ, Smith KJ, MacLachlan MJ (2009) Triptycene-based metal salphens-exploiting intrinsic molecular porosity for gas storage. Chem Eur J 15(44):11824–11828

    Article  CAS  Google Scholar 

  25. Cho YJ, Park HB (2011) High performance polyimide with high internal free volume elements. Macromol Rapid Commun 32(7):579–586

    Article  CAS  Google Scholar 

  26. Robeson LM (2008) The upper bound revisited. J Membrane Sci 320(1–2):390–400

    Article  CAS  Google Scholar 

  27. Gong F, Mao H, Zhang Y, Zhang S, Xing W (2011) Synthesis of highly sulfonated poly(arylene ether sulfone)s with sulfonated triptycene pendants for proton exchange membranes. Polymer 52(8):1738–1747

    Article  CAS  Google Scholar 

  28. Zhang C, Liu Y, Li B, Tan B, Chen CF, Xu HB, Yang XL (2011) Triptycene-based microporous polymers: synthesis and their gas storage properties. ACS Macro Lett 1(1):190–193

    Article  Google Scholar 

  29. Mastalerz M, Schneider MW, Oppel IM, Presly O (2011) A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew Chem Int Ed 50(5):1046–1051

    Article  CAS  Google Scholar 

  30. Zhao YC, Cheng QY, Zhou D, Wang T, Han BH (2012) Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J Mater Chem 22(23):11509–11514

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Feng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, CF., Ma, YX. (2013). Iptycenes and Their Derivatives in Material Science. In: Iptycenes Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32888-6_8

Download citation

Publish with us

Policies and ethics