Skip to main content

Development of Patient Specific Cardiovascular Models Predicting Dynamics in Response to Orthostatic Stress Challenges

  • Chapter
  • First Online:
Mathematical Modeling and Validation in Physiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2064))

Abstract

Physiological realistic models of the controlled cardiovascular system are constructed and validated against clinical data. Special attention is paid to the control of blood pressure, cerebral blood flow velocity, and heart rate during postural challenges, including sit-to-stand and head-up tilt. This study describes development of patient specific models, and how sensitivity analysis and nonlinear optimization methods can be used to predict patient specific characteristics when analyzed using experimental data. Finally, we discuss how a given model can be used to understand physiological changes between groups of individuals and how to use modeling to identify biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note, that depending on the QR factorization algorithm used a different permutation vector may be obtained. The importance of this step is to obtain a parameter set that gives rise to a well-conditioned Jacobian, that can be inverted allowing unique estimation of the selected model parameters. The exact parameter set obtained should include parameters that make sense to estimate in terms of the physiological system studied. In other words, the sub-set of parameters may not be unique, thus care must be taken in analyzing the exact parameter values chosen. Subset selection is further discussed in Chaps. 2, 3 and 11.

References

  1. Allen, L.J.S.: An Introduction to Mathematical Biology. Pearson Education, Up Sadddle River, NJ (2003)

    Google Scholar 

  2. Danielsen, M.: Modeling of feedback mechanisms which control the heart function in a view to an implementation in cardiovascular models. PhD Thesis, Roskilde University, Denmark. Text No 358 (1998)

    Google Scholar 

  3. DeVault, K., Gremaud, P., Zhao, P., Vernieres, G., Novak, V., Olufsen, M.S.: Blood flow in the circle of Willis: Modeling and calibration. SIAM Int. J. Multiscale Model. Simul. 7 888–909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ellwein, L.M.: Cardiovascular and Respiratory Regulation, Modeling and Parameter Estimation. PhD Thesis, Applied Mathematics, NC State University, Raleigh, NC (2009)

    Google Scholar 

  5. Ellwein, L.M., Pope, S.R., Xie, A., Batzel, J.J., Kelley, C.T., Olufsen, M.S.: Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia. Math Biosci, in press (2012). doi: 10.1016/j.mbs.2012.09.003

    Google Scholar 

  6. Ellwein, L.M., Tran, H.T., Zapata, C., Novak, V., Olufsen, M.S.: Sensitivity analysis and model assessment: Mathematical models for arterial blood flow and blood pressure. J. Cardiovasc. Eng. 8, 94–108 (2008)

    Article  Google Scholar 

  7. Fowler, K.R., Gray, G.A., Olufsen, M.S.: Modeling heart rate regulation – Part II: Parameter identification. J. Cardiovasc. Eng. 8, 109–119 (2008)

    Article  Google Scholar 

  8. Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology, 9th edn. WB Saunders, Philadelphia, PE (1996)

    Google Scholar 

  9. Johnson, P., Shore, A., Potter, J.F., Panerai, R.B., James, M.: Baroreflex sensitivity measured by spectral and sequence analysis in cerebrovascular disease – methodological considerations Clin. Auton. Res. 16, 270–275 (2006)

    Article  Google Scholar 

  10. Jose, A., Collison, D.: The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res. 4, 160–167 (1970)

    Article  Google Scholar 

  11. Kaufmann, H., Biaggioni, I., Voustianiouk, A., Diedrich, A., Costa, F., Clarke, R., Gizzi, M., Raphan, T., Cohen, B.: Vestibular control of sympathetic activity: An otolith-sympathetic relfex in humans. Exp. Brain Res. 143, 463–469 (2002)

    Article  Google Scholar 

  12. Kyrylov, V., Severyanova, L.A., Vieira, A.: Modeling robust oscillatory behaviour of the hypothalamic-pituitary-adrenal axis. IEEE Trans. Biomed. Eng. 52, 1977–1983 (2005)

    Article  Google Scholar 

  13. Liang, K.H., Krus, D.J., Webb, J.M.: K-fold crossvalidation in canonical analysis. Multivariate Behav. Res. 30, 539–546 (1995)

    Article  Google Scholar 

  14. Low, P.A., Bannister, R.G.: Multiple System Atrophy and Pure Autonomic Failure. In: Low, P.A. (eds.) Clinical Autonomic Disorders, pp. 555–575. Lippincott-Raven, Philadelphia, PE (1997)

    Google Scholar 

  15. Mosqueda-Garcia, R., Furlan, R., Tank, J., Fernandez-Violante, R.: The elusive pathophysiology of neurally mediated syncope. Circulation 102, 2898–2906 (2000)

    Article  Google Scholar 

  16. Olufsen, M.S.: Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276, H257–H268 (1999)

    Google Scholar 

  17. Olufsen, M.S., Nadim, A., Lipsitz, L.A.: Dynamics of cerebral blood flow regulation explained using a lumped parameter model. Am. J. Physiol. 282, R611–R622 (2002)

    Google Scholar 

  18. Olufsen, M.S., Nadim, A.: On deriving lumped models for blood flow and pressure in the systemic arteries. Math. Biosci. Eng. 1, 61–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Olufsen, M.S., Tran, H.T., Ottesen, J.T.: Modeling cerebral blood flow control during posture change from sitting to standing. Cardiovasc. Eng. 4(1), 47–58 (2004)

    Article  Google Scholar 

  20. Olufsen, M.S., Ottesen, J.T., Tran, H.T., Ellwein, L.M., Lipsitz, L.A., Novak, V.: Blood pressure and blood flow variation during postural change from sitting to standing: Model development and validation. J. Appl. Physiol. 99, 1523–1537 (2005)

    Article  Google Scholar 

  21. Olufsen, M.S., Tran, H.T., Ottesen, J.T., Lipsitz, L.A., Novak, V.: Modeling baroreflex regulation of heart rate during orthostatic stress. Am. J. Physiol. 291, R1355–R1368 (2006)

    Article  Google Scholar 

  22. Olufsen, M.S., Alston, A.V., Tran, H.T., Ottesen, J.T., Novak, V.: Modeling heart rate regulation, Part I: Sit-to-stand versus head-up tilt. J. Cardiovasc. Eng. 8, 73–87 (2008)

    Google Scholar 

  23. Opthof, T.: The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res. 45, 173–176 (2000)

    Google Scholar 

  24. Ottesen, J.T.: Modeling of the baroreflex-feedback mechanism with time-delay. J. Math. Biol. 36, 41–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ottesen, J.T.: Nonlinearity of baroreceptor nerves. Surv. Math. Ind. 7, 187–201, (1997)

    MATH  Google Scholar 

  26. Ottesen, J.T.: General Compartmental Models of the Cardiovascular System in Mathematical Modelling in Medicine, pp. 121–138. IOS, Amsterdam (2000)

    Google Scholar 

  27. Ottesen, J.T.: Modeling the dynamical baroreflex-feedback control. Math. Comp. Mod. 31, 167–173 (2000)

    Article  Google Scholar 

  28. Ottesen, J.T.: Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation. J. Math. Biol. 46, 309–332 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ottesen, J.T., Danielsen, M.: Modeling ventricular contraction with heart rate changes. J. Theor. Biol. 222, 337–346 (2003)

    Article  MathSciNet  Google Scholar 

  30. Ottesen, J.T., Olufsen, M.S., Larsen, J.: Applied Mathematical Models in Human Physiology. IAM, Philadelphia, PA (2004)

    Book  MATH  Google Scholar 

  31. Pope, S., Ellwein, L.M., Zapata, C.L., Novak, V., Kelley, C.T., Olufsen, M.S.: Estimation and identification of parameters in a lumped cerebrovascular model. Math. Biosci. Engl. 6, 93–115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pope, S.R.: Parameter identification in lumped compartment Cardiorespiratory models. PhD Thesis, Applied Mathematics, NC State University, Raleigh, NC (2009)

    Google Scholar 

  33. Ray, C.: Interaction of the vestibular system and baroreflexes on sympathetic nerve activity in humans. Am. J. Physiol. 279, H2399–H2404 (2000)

    Google Scholar 

  34. Ray, C., Monahan, K.: The vestibulosympathetic reflex in humans: Neural interactions between cardiovascular reflexes. Clin. Exp. Pharmacol. Physiol. 29, 98–102 (2002)

    Article  Google Scholar 

  35. Ray, C., Carter, J.: Vestibular activation of sympathetic nerve activity. Acta Physiol. Scand. 177, 313–319 (2003)

    Article  Google Scholar 

  36. Robbe, H.W.J., Mulder, L.J.M., Ruddel, H., Langewitz, W.A., Weldman, J.B.P., Mulder, G.: Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 10, 538–543 (1987)

    Article  Google Scholar 

  37. Robertson, D., Low, P.A., Polinsky, R.J.: Primer on the Autonomic Nervous System, 2nd edn. Academic, Boston, MA (2005)

    Google Scholar 

  38. Smith, J.J., Kampine, J.T.: Circulatory Physiology, the Essentials, 3rd edn. Williams and Wilkins, Baltimore, MD (1990)

    Google Scholar 

  39. Steele, B., Olufsen, M.S., Taylor, C.: Fractal network model for simulating abdominal and lower extremity blood flow during rest and exercise conditions. Comp. Meth. Biomech. Biomed. Eng. 10, 39–51 (2007)

    Google Scholar 

  40. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Books Publishing, LLC (1994)

    Google Scholar 

  41. Thomaseth, K., Cobelli, C.: Generalized sensitivity functions in physiological system identification. Ann. Biomed. Eng. 27, 607–616 (1999)

    Article  Google Scholar 

  42. Ursino, M., Lodi, C.A.: A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J. Appl. Physiol. 82, 1256–1269 (1997)

    Google Scholar 

  43. Ursino, M., Magosso, E.: Short-term autonomic control of cardiovascular function: a mini-review with the help of mathematical models. J. Integr. Neurosci. 2, 219–247 (2003)

    Article  Google Scholar 

  44. Ursino, M., Magosso, E.: Short-term autonomic control of the cardio-respiratory system: A summary with the help of a comprehensive mathematical model. IEEE Eng. Med. Biol. Soc. 1, 354–358 (2006)

    Google Scholar 

  45. Wilson, T.D., Cotter, L.A., Draper, J.A., Misra, S.P., Rice, C.D., Cass, S.P., Yates, B.J.: Vestibular inputs elicit patterned changes in limb blood flow in conscious cats. J. Physiol. 575, 671–684 (2006)

    Article  Google Scholar 

  46. Zhang, R., Zuckerman, J.H., Iwasaki, K., Wilson, T.E., Crandall, C.G., Levine, B.D.: Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106, 1814–1820 (2002)

    Article  Google Scholar 

  47. Zhang, R., Levine, B.D.: Autonomic ganglionic blockade does not prevent reduction in cerebral blood flow velocity during orthostasis in humans. Stroke 38, 1238–1244 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank graduate students involved with this project including Laura Ellwein, Department of Biomedical Engineering, Marquette University, Scott Pope, SAS Corp, Raleigh, NC, April Alston, Department of Mathematics, NCSU, and numerous undergraduate students participating in research and REU program at NCSU. Furthermore, authors would like to thank Hien Tran and Tim Kelley, Department of Mathematics, NCSU. The work by Mette Olufsen was supported in part by NSF-DMS grant # 0616597 and NSF-OISE grant # 0437037. V. Novak, director of the SAFE Laboratory at BIMDC was supported by NIH-NIA Harvard Older American Independence Center 2P60 AG08812-11A1, Core B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny T. Ottesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottesen, J.T., Novak, V., Olufsen, M.S. (2013). Development of Patient Specific Cardiovascular Models Predicting Dynamics in Response to Orthostatic Stress Challenges. In: Batzel, J., Bachar, M., Kappel, F. (eds) Mathematical Modeling and Validation in Physiology. Lecture Notes in Mathematics(), vol 2064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32882-4_10

Download citation

Publish with us

Policies and ethics