Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1051 Accesses

Abstract

The purpose of this chapter is to collect experimental details and background material that are common to multiple chapters of this thesis. Section 2.2 discusses a model of spontaneous parametric down conversion and details various experimental down conversion setups used for multi-photon state generation: each description will refer to the chapters where they are employed. Section 2.3 reviews the underlying concepts of waveguide optics required for this thesis. Finally, Sect. 2.4 describes three different waveguide architectures that are employed in the experiments reported in this thesis. Simulation and fabrication of these architectures lies outside the scope of this thesis, and were performed by colleagues as stated in each corresponding section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Where we define collection efficiency of one mode \(A\) of two modes \(A\) and \(B\), as the total number coincidences detected from modes \(A\) and \(B\), divided by the total number of single photon events detected from mode \(A\); note that this definition involves the detector efficiency.

  2. 2.

    For example Refs. [28, 29].

  3. 3.

    This approach is also used for theoretical treatment of larger systems of coupled waveguides (for example [31, 32]), which we shall return to in Chap. 7.

  4. 4.

    The closest standard fibre-array seperation is \(127\,\upmu \)m.

References

  1. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zeilinger, Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)

    Article  Google Scholar 

  2. H.A. Bachor, T.C. Ralph, A Guide to Experiments in Quantum Optics, 2nd edn. (Wiley, New York, 2004)

    Google Scholar 

  3. C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419(6907), 594–597 (2002)

    Article  ADS  Google Scholar 

  4. R.B. Patel, A.J. Bennett, I. Farrer, C.A. Nicoll, D.A. Ritchie, A. Shields, Two-photon interference of the emission from electrically tubnable remote quantum dots. Nat. Photonics 4, 632–635 (2010)

    Article  ADS  Google Scholar 

  5. S. Olmschenk, D.N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, C. Monroe, Quanutm teleportation between distant matter qubits. Science 323, 486–489 (2009)

    Article  ADS  Google Scholar 

  6. P. Maunz, D.L. Moerhring, S. Olmschenk, K.C. Younge, D.N. Matsukevich, C. Monroe, Quantum interference of photon pairs from two remote atomic ions. Nat. Phys. 3, 538–541 (2007)

    Article  Google Scholar 

  7. T. Chanelière, D.N. Matukevich, S.D. Jenkins, S.-Y. Lan, R. Zhao, T.A.B. Kennedy, A. Kuzmich, Quantum interference of electromagnetic fields from remote quantum memories. Phys. Rev. Lett. 98, 113602 (2007)

    Article  ADS  Google Scholar 

  8. J. Beugnon, M.P.A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, P. Grangier, Quanutm interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2007)

    Google Scholar 

  9. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)

    Article  ADS  Google Scholar 

  10. J.G. Rarity, P.R. Tapster, Fourth-order interference in parametric downconversion. J. Opt. Soc. Am. B 6, 1221–1226 (1989)

    Article  ADS  Google Scholar 

  11. J.G. Rarity, P.R. Tapster, E. Jakeman, T. Larchuk, R.A. Campos, M.C. Teich, B.E.A. Saleh, Two-photon interference in a mach-zehnder interferometer. Phys. Rev. Lett. 65(11), 1348–1351 (Sep 1990)

    Article  ADS  Google Scholar 

  12. J.G. Rarity, P.R. Tapster, Two-color photons and nonlocality in fourth-order interference. Phys. Rev. A 41, 5139–5146 (1990)

    Article  ADS  Google Scholar 

  13. J.G. Rarity, P.R. Tapster, Experimental violation of bell’s inequality based on phase and momentum. Phys. Rev. Lett. 64, 2495–2498 (1990)

    Google Scholar 

  14. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Google Scholar 

  15. J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-not gate. Nature 426(6964), 264–267 (2003)

    Article  ADS  Google Scholar 

  16. C.-Y. Lu, D.E. Browne, T. Yang, J.W. Pan, Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett 99, 250504 (2007)

    Article  ADS  Google Scholar 

  17. B.P. Lanyon, T.J. Weinhold, N.K. Langford, M. Barbieri, D.F.V. James, A. Gilchrist, A.G. White, Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99(25), 250505 (2007)

    Article  ADS  Google Scholar 

  18. B.P. Lanyon, J.D. Whitfield, G.G. Gillett, M.E. Goggin, M.P. Almeida, I. Kassal, J.D. Biamonte, M. Mohseni, B.J. Powell, M. Barbieri, A. Aspuru-Guzik, A.G. White, Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)

    Article  Google Scholar 

  19. Z.Y. Ou, X.Y. Zou, L.J. Wang, L. Mandel, Experiment on nonclassical 4th-order interference. Phys. Rev. A 42, 2957–2965 (1990)

    Article  ADS  Google Scholar 

  20. M.W. Mitchell, J.S. Lundeen, A.M. Steinberg, Super-resolving phase measurements with a multiphoton entangled state. Nature 429(6988), 161–164 (2004)

    Article  ADS  Google Scholar 

  21. P. Walther, J.W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, A. Zeilinger, De broglie wavelength of a non-local four-photon state. Nature 429(6988), 158–161 (2004)

    Article  ADS  Google Scholar 

  22. T. Nagata, R. Okamoto, J.L. O’brien, K. Sasaki, S. Takeuchi, Beating the standard quantum limit with four-entangled photons. Science 316(5825), 726–729 (2007)

    Article  ADS  Google Scholar 

  23. I. Afek, O. Ambar, Y. Silberberg, High-noon states by mixing quantum and classical light. Science 328, 879–881 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. Fulconis, O. Alibart, J.L. O’Brien, W.J. Wadsworth, J.G. Rarity, Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. Phys. Rev. Lett. 99(12), 120501 (2007)

    Article  ADS  Google Scholar 

  25. Z.Y.J. Ou, Multi-Photon Quantum Interference (Springer, New York, 2007)

    Google Scholar 

  26. J.C.F. Matthews, A. Politi, A. Stefanov, J.L. O’Brien, Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346–350 (2009)

    Google Scholar 

  27. A. Politi, J.C.F. Matthews, J.L. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325(5945), 1221–1221 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. K. Okamoto, Fundamentals of Optical Waveguides, 2nd edn. (Elsevier Academic Press, New York, 2006)

    Google Scholar 

  29. G. Lifante, Integrated Photonics: Fundamentals (Wiley, New York, 2003)

    Google Scholar 

  30. L.E. Estes, T.H. Keil, L.M. Narducci, Quantum-mechanical description of two coupled harmonic oscillators. Phys. Rev. 175(1), 286 (1968)

    Article  ADS  Google Scholar 

  31. H.B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008)

    Article  ADS  Google Scholar 

  32. Y. Bromberg, Y. Lahini, R. Morandotti, Y. Silberberg, Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102(25), 253904 (2009)

    Article  ADS  Google Scholar 

  33. G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O’Brien, Laser written waveguide photonic quantum circuits. Opt. Express 17(15), 12 546–12 554 (2009)

    Google Scholar 

  34. M. Ams, G.D. Marshall, D.J. Spence, M.J. Withford, Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express 13(15), 5676–5681 (2005)

    Article  ADS  Google Scholar 

  35. M. Ams, G.D. Marshall, M.J. Withford, Study of the influence of femtosecond laser polarisation on direct writing of waveguides. Opt. Express 14(26), 13 158–13 163 (2006)

    Google Scholar 

  36. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320(5876), 646–649 (2008)

    Article  ADS  Google Scholar 

  37. A. Politi, J.C.F. Matthews, M.G. Thompson, J.L. O’Brien, Integrated quantum photonics. IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. F. Matthews .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthews, J.C.F. (2013). Background and Methods. In: Multi-Photon Quantum Information Science and Technology in Integrated Optics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32870-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32870-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32869-5

  • Online ISBN: 978-3-642-32870-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics