Skip to main content

On the Role of Endogenous Electron Shuttles in Extracellular Electron Transfer

  • Chapter
  • First Online:
Microbial Metal Respiration

Abstract

As a result of cellular metabolism, microbes dramatically alter the chemistry of environments in which they live. Microbes directly influence cycling of metals in the environment via respiratory redox transformations, often influencing solubility and toxicity of these metals by altering their redox state. Metal oxides and a number of other potential electron acceptors are inaccessible to most organisms due to poor solubility at neutral pH. Insoluble substrates cannot diffuse into the cell and therefore require specific electron transfer strategies. The primary focus of research in model organisms has been the mechanisms underlying electron transfer to insoluble, extracellular substrates. Two distinct mechanisms, which are not mutually exclusive, have been championed to explain how organisms transfer electrons from the surface of the cell to an extracellular substrate. In the first mechanism, electrons are transferred during direct contact between the insoluble substrate and redox active proteins associated with the cell surface. The second mechanism involves small redox active molecules termed ‘endogenous electron shuttles’ secreted by the organism. These molecules are reduced at the cell surface and react abiotically with the insoluble substrate in a cyclic fashion. In this chapter the discovery, characterization, and implications of endogenous electron shuttles are discussed with emphasis on the experimental evidence for shuttle-based electron transfer mechanisms. Model systems of Shewanella oneidensis, Pseudomonas sp., and Geothrix fermentans are examined in detail to illustrate the current state of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert A (1950) The metal-binding properties of riboflavin. Biochem J 47(3):xxvi

    Google Scholar 

  • Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102:11076–11081

    Article  PubMed  CAS  Google Scholar 

  • Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284:28865–28873

    Article  PubMed  CAS  Google Scholar 

  • Beliaev AS, Saffarini DA (1998) Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292–6297

    PubMed  CAS  Google Scholar 

  • Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D (2001) MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722–730

    Article  PubMed  CAS  Google Scholar 

  • Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22:1672–1679

    Article  PubMed  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  PubMed  CAS  Google Scholar 

  • Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189

    Article  PubMed  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  PubMed  CAS  Google Scholar 

  • Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ, Wang Z, Watmough NJ, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ (2011) Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci U S A 108:9384–9389

    Article  PubMed  CAS  Google Scholar 

  • Coates JD, Ellis DJ, Gaw CV, Lovley DR (1999) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49 Pt 4:1615–1622

    Google Scholar 

  • Coursolle D, Gralnick JA (2010) Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol Microbiol 77(4):995–1008

    CAS  Google Scholar 

  • Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474

    Article  PubMed  CAS  Google Scholar 

  • Covington ED, Gelbmann CB, Kotloski NJ, Gralnick JA (2010) An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol Microbiol 78:519–532

    Article  PubMed  CAS  Google Scholar 

  • Dietrich LE, Teal TK, Price-Whelan A, Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206

    Article  PubMed  CAS  Google Scholar 

  • Furia T (1972) CRC handbook of food additives. CRC Press, Boca Raton

    Google Scholar 

  • Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ, Mills PC, Fredrickson JK, Zachara JM, Shi L, Beliaev AS, Marshall MJ, Tien M, Brantley S, Butt JN, Richardson DJ (2009) Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci U S A 106:22169–22174

    Article  PubMed  CAS  Google Scholar 

  • Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258

    Article  PubMed  CAS  Google Scholar 

  • Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  PubMed  CAS  Google Scholar 

  • Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192:3345–3351

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Hu J, Fitzgerald LA, Biffinger JC, Xie P, Ringeisen BR, Lieber CM (2010) Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc Natl Acad Sci U S A 107:16806–16810

    Article  PubMed  CAS  Google Scholar 

  • Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71:4414–4426

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR, Blunt-Harris EL, Lovley DR (1999) The periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III). J Bacteriol 181:7647–7649

    PubMed  CAS  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  PubMed  CAS  Google Scholar 

  • Luo HP, Liu GL, Zhang RD, Cao LX (2009) Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7. Huan Jing Ke Xue 30:2118–2123

    PubMed  CAS  Google Scholar 

  • Maddula VS, Zhang Z, Pierson EA, Pierson LS (2006) Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30–84. Microb Ecol 52:289–301

    Article  PubMed  CAS  Google Scholar 

  • Maddula VS, Pierson EA, Pierson LS (2008) Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30–84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190:2759–2766

    Article  PubMed  CAS  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973

    Article  PubMed  CAS  Google Scholar 

  • Myers CR, Myers JM (2004) Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl Environ Microbiol 70:5415–5425

    Article  PubMed  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2000) Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microbiol 66:2248–2251

    Article  PubMed  CAS  Google Scholar 

  • Nevin K, Lovley D (2002a) Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19 141–159

    Google Scholar 

  • Nevin KP, Lovley DR (2002b) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68:2294–2299

    Article  PubMed  CAS  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97

    Article  PubMed  CAS  Google Scholar 

  • Okegbe C, Sakhtah H, Sekedat M, Price-Whelan A, Dietrich LE (2012) Redox eustress: roles for redox-active metabolites in bacterial signaling and behavior. Antioxid Redox Signal 16(7): 658–667

    Article  PubMed  CAS  Google Scholar 

  • Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Höfte M, Verstraete W, Rabaey K (2008a) Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Pham TH, Boon N, De Maeyer K, Höfte M, Rabaey K, Verstraete W (2008b) Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol 80:985–993

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  PubMed  CAS  Google Scholar 

  • Price-Whelan A, Dietrich LE, Newman DK (2007) Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189:6372–6381

    Article  PubMed  CAS  Google Scholar 

  • Rabaey K, Boon N, Höfte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408

    Article  PubMed  CAS  Google Scholar 

  • Ramos I, Dietrich LE, Price-Whelan A, Newman DK (2010) Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol 161:187–191

    Article  PubMed  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Article  PubMed  CAS  Google Scholar 

  • Ross DE, Ruebush SS, Brantley SL, Hartshorne RS, Clarke TA, Richardson DJ, Tien M (2007) Characterization of protein–protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Appl Environ Microbiol 73:5797–5808

    Article  PubMed  CAS  Google Scholar 

  • Ross DE, Brantley SL, Tien M (2009) Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 75:5218–5226

    Article  PubMed  CAS  Google Scholar 

  • Seeliger S, Cord-Ruwisch R, Schink B (1998) A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol 180:3686–3691

    PubMed  CAS  Google Scholar 

  • Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20

    Article  PubMed  CAS  Google Scholar 

  • Srikanth S, Marsili E, Flickinger MC, Bond DR (2008) Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol Bioeng 99:1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Straub KL, Schink B (2003) Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiol Lett 220:229–233

    Article  PubMed  CAS  Google Scholar 

  • Velasquez-Orta SB, Head IM, Curtis TP, Scott K, Lloyd JR, von Canstein H (2010) The effect of flavin electron shuttles in microbial fuel cells current production. Appl Microbiol Biotechnol 85:1373–1381

    Article  PubMed  CAS  Google Scholar 

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  Google Scholar 

  • Wang Y, Kern SE, Newman DK (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192:365–369

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wilks JC, Danhorn T, Ramos I, Croal L, Newman DK (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 193:3606–3617

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Gralnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brutinel, E.D., Gralnick, J.A. (2013). On the Role of Endogenous Electron Shuttles in Extracellular Electron Transfer. In: Gescher, J., Kappler, A. (eds) Microbial Metal Respiration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32867-1_4

Download citation

Publish with us

Policies and ethics