Skip to main content

Minerals and Aqueous Species of Iron and Manganese as Reactants and Products of Microbial Metal Respiration

  • Chapter
  • First Online:

Abstract

Minerals and aqueous species of redox-active elements are common participants in the processes of microbial metal respiration. Redox-active elements may be major or minor constituents of minerals and mineraloids. They are often adsorbed onto the surfaces on minerals that may or may not be involved in microbial metal respiration. They may be adsorbed onto or incorporated in solid-like organic matter; harvested by and contained in living cells; associated with aqueous colloidal matter, organic or inorganic; dissolved and complexed with humic substances; dissolved in the aqueous phase, possibly complexed with inorganic anions. Given their sheer abundance, iron and manganese are the most important elements from this point of view. Mineralogy of Fe is controlled by the two common oxidation states, +2 and +3. The three commonly available oxidation states of Mn (+2, +3, +4) make the mineralogy of this transition metal even more variable. Besides the chemical and crystallographic aspects of minerals of Fe and Mn, this chapter also briefly refers to the mounting evidence that essentially all near-surface minerals of Fe and Mn are involved in microbial metal respiration. In addition to the minerals of Fe and Mn, minerals with layered structure are discussed. These embrace clay minerals and layered double hydroxides; the latter group includes the ephemeral but important green rusts. Redox potentials for many of the minerals of Fe and Mn are calculated and the dependence of redox potentials on the particle size of iron oxides is quantitatively evaluated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allan JEM, Coey JMD, Schwertmann U, Friedrich G, Wiechowski A (1989) An occurrence of a fully-oxidized natural titanomaghemite in basalt. Miner Mag 53:299–304

    Article  CAS  Google Scholar 

  • Anderson GM (2005) Thermodynamics of natural systems, 2nd edn. Cambridge University Press, Cambridge, p 648

    Book  Google Scholar 

  • Bender Koch C, Mørup S (1991) Identification of green rust in an ochre sludge. Clay Miner 26:577–582

    Article  Google Scholar 

  • Bigham JM, Schwertmann U, Carlson L, Murad E (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim Cosmochim Ac 54:2743–2758

    Article  CAS  Google Scholar 

  • Billon G, Ouddane B, Boughriet A (2001) Artefacts in the speciation of sulfides in anoxic sediments. Analyst 126:1805–1809

    Article  CAS  Google Scholar 

  • Birch WD, Pring A, Reller A, Schmalle HW (1993) Bernalite, Fe(OH)3, a new mineral from Broken Hill, New South Wales: description, and structure. Am Miner 78:827–834

    CAS  Google Scholar 

  • Brindley GW, Kikkawa S (1980) Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite. Clay Clay Miner 28:87–91

    Article  CAS  Google Scholar 

  • Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib S (1998) A review of porous manganese oxide materials. Chem Mater 10:2619–2628

    Article  CAS  Google Scholar 

  • Brown GE, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Grätzel M, Maciel G, McCarthy MI, Nealson KH, Sverjensky DA, Toney MF, Zachara JM (1999) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem Rev 99:77–174

    Article  PubMed  CAS  Google Scholar 

  • Burns RG (2005) Mineralogical applications of crystal field theory. Cambridge topics in mineral physics and chemistry, vol 5. Cambridge University Press, Cambridge

    Google Scholar 

  • Burns VM, Burns RG (1978) Post-depositional metal enrichment processes inside manganese nodules from the north equatorial Pacific. Earth Planet Sc Lett 39:341–348

    Article  CAS  Google Scholar 

  • Canfield DE (1997) The geochemistry of river particulates from the continental USA: major elements. Geochim Cosmochim Ac 61:3349–3365

    Article  CAS  Google Scholar 

  • Carlson L, Schwertmann U (1990) The effect of CO2 and oxidation rate on the formation of goethite versus lepidocrocite from an Fe(II) system at pH 6 and pH 7. Clay Miner 25:65–71

    Article  CAS  Google Scholar 

  • Catalano JG (2011) Weak interfacial water ordering on isostructural hematite and corundum (001) surfaces. Geochim Cosmochim Ac 75:2062–2071

    Article  CAS  Google Scholar 

  • Chaudhuri SK, Lack JG, Coates JD (2001) Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl Environ Microb 67:2844–2848

    Article  CAS  Google Scholar 

  • Chaves LHG (2005) The role of green rust in the environment: a review. Revista Brasileira de Engenharia Agrícola e Ambiental 9:284–288

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim

    Google Scholar 

  • Drits VA, Sakharov BA, Salyn AL, Manceau A (1993) Structural model for ferrihydrite. Clay Miner 28:185–207

    Article  CAS  Google Scholar 

  • Duckworth OW, Sposito G (2007) Siderophore-promoted dissolution of synthetic and biogenic layer-type Mn oxides. Chem Geol 242:497–508

    Article  CAS  Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge

    Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling. Wiley, New York

    Google Scholar 

  • Effenberger H, Mereiter K, Zemann J (1981) Crystal structure refinement of magnesite, calcite, rhodochrosite, siderite, smithsonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z Kristallogr 156:233–243

    Article  CAS  Google Scholar 

  • Ekstrom EB, Learman DR, Madden AS, Hansel CM (2010) Contrasting effects of Al substitution on microbial reduction of Fe(III) (hydr)oxides. Geochim Cosmochim Ac 74:7086–7099

    Article  CAS  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Ac 61:3319–3328

    Article  CAS  Google Scholar 

  • Fenter P, Sturchio NC (2004) Mineral-water interfacial structures revealed by synchrotron X-ray scattering. Prog Surf Sci 77:171–258

    Article  CAS  Google Scholar 

  • Fernandez-Martinez A, Timon V, Roman-Ross G, Cuello GJ, Daniels JE, Ayora C (2010) The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate. Am Mineral 95:1312–1322

    Article  CAS  Google Scholar 

  • Fleet ME (1981) The structure of magnetite. Acta Crystallogr B37:917–920

    CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li S-MW, Krupka KM (2000) Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim Cosmochim Ac 64:3085–3098

    Article  CAS  Google Scholar 

  • Ginn BR, Fein JB (2008) The effect of species diversity on metal adsorption onto bacteria. Geochim Cosmochim Ac 72:3939–3948

    Article  CAS  Google Scholar 

  • Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH (2010) Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation. J Phys Condens Mat 22:255401

    Article  Google Scholar 

  • Gustafsson JP, Persson I, Klja DB, van Schaik JWJ (2007) Binding of iron(III) to organic solis: EXAFS spectroscopy and chemical equilibrium modeling. Environ Sci Technol 41:1232–1237

    Article  PubMed  CAS  Google Scholar 

  • Hanna K (2007) Adsorption of aromatic carboxylate compounds on the surface of synthesized iron oxide-coated sands. Appl Geochem 22:2045–2053

    Article  CAS  Google Scholar 

  • Hansel CM, Learman DR, Lentini CJ, Ekstrom EB (2011) Effect of adsorbed and substituted Al on Fe(II)-induced mineralization pathways of ferrihydrite. Geochim Cosmochim Ac 75:4653–4666

    Article  CAS  Google Scholar 

  • Hansen DC (2011) Biological interactions at metal surfaces. JOM-US 63:22–27

    Article  Google Scholar 

  • Hawthorne FC, Krivovichev SV, Burns PC (2000) The crystal chemistry of sulfate minerals. Rev Mineral Geochem 40:1–112

    Article  CAS  Google Scholar 

  • Hedrich S, Lunsdorf H, Keeberg R, Heide G, Seifert J, Schlomann M (2011) Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens. Environ Sci Technol 45:7685–7692

    Article  PubMed  CAS  Google Scholar 

  • Holmén BA, Sison JD, Nelson DC, Casey WH (1999) Hydroxamate siderophores, cell growth and Fe(III) cycling in two anaerobic iron oxide media containing Geobacter metallireducens. Geochim Cosmochim Ac 63:227–239

    Article  Google Scholar 

  • Huminicki DMC, Hawthorne FC (2002) The crystal chemistry of the phosphate minerals. Rev Mineral Geochem 48:123–254

    Article  CAS  Google Scholar 

  • Janney DE, Cowley JM, Buseck PR (2000a) Structure of synthetic 2-line ferrihydrite by electron nanodiffraction. Am Mineral 85:1180–1187

    CAS  Google Scholar 

  • Janney DE, Cowley JM, Buseck PR (2000b) Transmission electron microscopy of synthetic 2- and 6-line ferrihydrite. Clay Clay Miner 48:111–119

    Article  CAS  Google Scholar 

  • Janney DE, Cowley JM, Buseck PR (2001) Structure of synthetic 6-line ferrihydrite by electron nanodiffraction. Am Mineral 86:327–335

    Google Scholar 

  • Jansen E, Kyek A, Schafer W, Schwertmann U (2002) The structure of six-line ferrihydrite. Appl Phys A 74 (supplement S):1004–1006

    Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279

    Article  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908

    Article  PubMed  CAS  Google Scholar 

  • Kholodov VN, Butuzova GYu (2008) Siderite formation and evolution of sedimentary iron ore deposition in the Earth’s history. Geol of Ore Deposit 50:299–319

    Google Scholar 

  • Kirkpatrick RJ, Kalinichev AG, Wang J (2005) Molecular dynamics modelling of hydrated mineral interlayers and surfaces: structure and dynamics. Mineral Mag 69:289–308

    Article  CAS  Google Scholar 

  • Klein C (2002) Manual of mineral science, 22nd edn. Wiley, New York, 641 pp

    Google Scholar 

  • Koch C, Oxborrow CA, Mørup S, Madsen MB, Quinn AJ, Coey JMD (1995) Magnetic properties of feroxyhyte (δ-FeOOH). Phys Chem Miner 22:333–341

    Article  CAS  Google Scholar 

  • Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth-Sci Rev 43:91–121

    Article  CAS  Google Scholar 

  • Konhauser KO (2007) Introduction to geomicrobiology. Blackwell Publishing, Malden

    Google Scholar 

  • Konhauser KO, Urrutia MM (1999) Bacterial clay authigenesis: a common biogeochemical process. Chem Geol 20:227–230

    Google Scholar 

  • Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolism. Elements 7:89–93

    Article  CAS  Google Scholar 

  • Kostka JE, Dalton DD, Skelton H, Dollhopf S, Stucki JW (2002) Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl Environ Microb 68:6256–6262

    Article  CAS  Google Scholar 

  • Kraemer SM, Butler A, Borer P, Cervini-Silva J (2005) Siderophores and the dissolution of iron-bearing minerals in marine systems. Rev Mineral Geochem 59:53–84

    Article  CAS  Google Scholar 

  • Kreller DI, Gibson G, Novak W, Van Loon GW, Horton JH (2003) Competitive adsorption of phosphate and carboxylate with natural organic matter on hydrous iron oxides as investigated by chemical force microscopy. Colloid Surf A 212:249–264

    Article  CAS  Google Scholar 

  • Kuma K, Tanaka J, Matsunaga K (1999) Effect of natural and synthetic organic-Fe(III) complexes in an estuarine mixing model on iron uptake and growth of a coastal marine diatom, Chaetoceros sociale. Mar Biol 134:761–769

    Article  CAS  Google Scholar 

  • Langmuir D (1971) Particle size effect on the reaction goethite = hematite + water. Am J Sci 271:147–156

    Article  CAS  Google Scholar 

  • Larese-Casanova P, Haderlein SB, Kappler A (2010) Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate and humic acids. Geochim Cosmochim Ac 74:3721–3734

    Article  CAS  Google Scholar 

  • Lee SS, Fenter P, Park C, Sturchio NC, Nagy KL (2010) Hydrated cation speciation at the muscovite (001)–water interface. Langmuir 26:16647–16651

    Article  PubMed  CAS  Google Scholar 

  • Lemire RJ, Berner U, Musikas C, Palmer DA, Taylor P, Tochiyama O (2011) Chemical thermodynamics, volume 9. Chemical thermodynamics of iron. OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux, France. Elsevier, Amsterdam

    Google Scholar 

  • Liu D, H Wang, H Dong, X Qiu, X Dong, Cravotta III CA (2011) Mineral transformations associated with goethite reduction by Methanosarcina barkeri. Chem Geol. doi:10.1016/j.chemgeo.2011.06.013

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Luther GW III, Shellenbarger PA, Brendel PJ (1996) Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters. Geochim Cosmochim Ac 60:951–960

    Article  CAS  Google Scholar 

  • Majzlan J (2010) Advances and gaps in the knowledge of thermodynamics and crystallography of acid-mine drainage sulfate minerals. Chimia 64:699–704

    Article  PubMed  CAS  Google Scholar 

  • Majzlan J (2011) Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate. Environ Sci Technol 45:4726–4732

    Article  PubMed  CAS  Google Scholar 

  • Majzlan J, Grevel K-D, Navrotsky A (2003) Thermodynamics of iron oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ- FeOOH), and maghemite (γ-Fe2O3). Am Mineral 88:855–859

    CAS  Google Scholar 

  • Majzlan J, Myneni SCB (2005) Speciation of iron and sulfate in acid waters: aqueous clusters to mineral precipitates. Environ Sci Technol 39:188–194

    Article  PubMed  CAS  Google Scholar 

  • Manceau A (2011) Critical evaluation of the revised akdalaite model for ferrihydrite. Am Mineral 96:521–533

    Article  CAS  Google Scholar 

  • Manceau A, Drits VA (1993) Local structure of ferrihydrite and feroxyhyte by EXAFS spectroscopy. Clay Miner 28:165–184

    Article  CAS  Google Scholar 

  • Manceau A, Tamura N, Celestre RS, MacDowell AA, Geoffroy N, Sposito G, Padmore HA (2003) Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi basin. Environ Sci Technol 37:75

    Google Scholar 

  • Maynard JB (2010) The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments. Econ Geol 105:535–552

    Article  CAS  Google Scholar 

  • Meunier A (2010) Clays. Springer, Berlin, 485 pp

    Google Scholar 

  • Meyer O, Roessner F, Rakoczy RA, Fischer RW (2010) Impact of organic interlayer anions in hydrotalcite precursor on the catalytic activity of hydrotalcite-derived mixed oxides. ChemCatChem 2:314–321

    Article  CAS  Google Scholar 

  • Michel FM, Antao SM, Chupas PJ, Lee PL, Parise JB, Schoonen MAA (2005) Short- to medium-range atomic order and crystallite size of the initial FeS precipitate from pair distribution function analysis. Chem Mater 17:6246–6255

    Article  CAS  Google Scholar 

  • Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007) The structure of ferrihydrite, a nanocrystalline material. Science 316:1726–1729

    Article  PubMed  CAS  Google Scholar 

  • Michel FM, Barron V, Torrent J, Morales MP, Serna CJ, Boily JF, Liu QS, Ambrosini A, Cismasu AC, Brown GE (2010) Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proc Natl Acad Sci U S A 107:2787–2792

    Article  PubMed  CAS  Google Scholar 

  • Michen B, Graule T (2010) Isoelectric points of viruses. J Appl Microbiol 109:388–397

    PubMed  CAS  Google Scholar 

  • Miot J, Benzerara K, Obst M, Kappler A, Hegler F, Schadler S, Bouchez C, Guyot F, Morin G (2009) Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria. APPL Environ Microb 75:5586–5591

    Article  CAS  Google Scholar 

  • Mullen L, Gong C, Czerwinski K (2007) Complexation of uranium (VI) with the siderophore desferrioxamine B. J Radioanal Nucl Chem 273:683–688

    Article  CAS  Google Scholar 

  • Murray HH (2007) Applied clay mineralogy. Development in clay science, vol 2. Elsevier, Amsterdam, 180 pp

    Google Scholar 

  • Myneni SCB, Tokunaga TK, Brown GE Jr (1997) Abiotic selenium redox transformations in the presence of Fe(II, III) oxides. Science 278:1106–1109

    Article  CAS  Google Scholar 

  • Navrotsky A (2001) Thermochemistry of nanomaterials. Rev Mineral Geochem 44:73–104

    Article  CAS  Google Scholar 

  • Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319:1635–1638

    Article  PubMed  CAS  Google Scholar 

  • Nesterova M, Moreau J, Banfield JF (2003) Model biomimetic studies of templated growth and assembly of nanocrystalline FeOOH. Geochim Cosmochim Ac 67:1177–1187

    Article  CAS  Google Scholar 

  • O’Loughlin EJ, Gorski CA, Scherer MM, Boyanov MI, Kemner KM (2010) Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (γ-FeOOH) and the formation of secondary mineralization products. Environ Sci Technol 44:4570–4576

    Article  PubMed  Google Scholar 

  • Ona-Nguema G, Morin G, Wang YH, Menguy N, Juillot F, Olivi L, Aquilanti G, Abdelmoula M, Ruby C, Bargar JR, Guyot F, Calas G, Brown GE (2009) Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens. Geochim Cosmochim Ac 73:1359–1381

    Article  CAS  Google Scholar 

  • Peña J, Kwon KD, Refson K, Bargar JR, Sposito G (2010) Mechanisms of nickel sorption by a bacteriogenic birnessite. Geochim Cosmochim Ac 74:3076–3089

    Article  Google Scholar 

  • Piepenbrock A, Dippon U, Porsch K, Appel E, Kappler A (2011) Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations and Fe(II):Fe(total) ratio. Geochim Cosmochim Ac (in press)

    Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci U S A 96:3447–3454

    Article  PubMed  CAS  Google Scholar 

  • Poulton SW, Raiswell R (2005) Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chem Geol 218:203–221

    Article  CAS  Google Scholar 

  • Pye K, Dickson AD, Schiavon N, Coleman ML, Cox M (1990) Formation of siderite-Mg-calcite-iron sulfide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology 37:325–343

    Article  CAS  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) and at higher temperatures. U.S. Geological Survey Bulletin 2131

    Google Scholar 

  • Roh Y, Zhang C-L, Vali H, Lauf RJ, Zhou J, Phelps TJ (2003) Biogeochemical and environmental factors in Fe biomineralization: magnetite and siderite formation. Clay Clay Miner 51:83–95

    Article  CAS  Google Scholar 

  • Roy S (2006) Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth-Sci Rev 77:273–305

    Article  Google Scholar 

  • Salas EC, Berelson WM, Hammond DE, Kampf AR, Nealson KH (2010) The impact of bacterial strain on the products of dissimilatory iron reduction. Geochim Cosmochim Ac 74:574–583

    Article  CAS  Google Scholar 

  • Schoonen MAA (2004) Mechanisms of sedimentary pyrite formation. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry—past and present. Geol S Am S 379:117–134

    Google Scholar 

  • Schoonen MAA, Barnes HL (1991) Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100 °C. Geochim Cosmochim Ac 55:1495–1504

    Article  CAS  Google Scholar 

  • Schüler D (ed) (2010) Microbiological monographs vol 3: Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg

    Google Scholar 

  • Schwertmann U (1964) Differenzierund der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Z Pflanzenern Düng Bodenkd 105:194–202

    Article  CAS  Google Scholar 

  • Schwertmann U (1985) The effect of pedogenic environments on iron oxide minerals. Adv Soil S 1:172–200

    Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH, Weinheim

    Google Scholar 

  • Stampfl PP (1969) Ein basisches Eisen-II-III-karbonat. Corros Sci 9:185–187

    Article  CAS  Google Scholar 

  • Szczepanik P, Sawlowicz Z (2010) Fe-S mineralization in the Jurassic biogenic remains (Czestochowa, Poland). Chem Erde-Geochem 70:77–87

    Article  CAS  Google Scholar 

  • Tan WF, Lu SJ, Liu F, Feng XH, He JZ, Koopall LK (2008) Determination of the point-of-zero charge of manganese oxides with different methods including an improved salt titration method. Soil Sci 173:277–286

    Article  CAS  Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sc 32:287–328

    Article  CAS  Google Scholar 

  • Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. In: Schink B (ed) Advances in microbial ecology. Kluwer Academic/Plenum Publishers, New York, pp 41–84

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Tipping E, Heaton MJ (1983) The adsorption of aquatic humic substances by two oxides of manganese. Geochim Cosmochim Ac 47:1393–1397

    Article  CAS  Google Scholar 

  • Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor J (2002) Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim Cosmochim Ac 66:3211–3224

    Article  CAS  Google Scholar 

  • Trolard F, Génin J-MR, Abdelmoula M, Bourrié G, Humbert B, Herbillon A (1997) Identification of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochim Cosmochim Ac 61.1107–1111

    Google Scholar 

  • Vodyanitskii YuN (2009) Mineralogy and geochemistry of manganese: a review of publications. Eurasian Soil Sci 42:1170–1178

    Google Scholar 

  • Wang JW, Rustad JR (2006) A simple model for the effect of hydration on the distribution of ferrous iron at reduced hematite (012) surfaces. Geochim Cosmochim Ac 70:5285–5292

    Article  CAS  Google Scholar 

  • Wang MK, White JL, Hem SL (1983) Influence of acetate, oxalate, and citrate anions on precipitation of aluminum hydroxide. Clay Clay Miner 31:65–68

    Article  CAS  Google Scholar 

  • Williams AGB, Scherer MM (2004) Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the iron oxide–water interface. Environ Sci Technol 38:4782–4790

    Article  PubMed  CAS  Google Scholar 

  • Yanina SV, Rosso KM (2008) Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320:218–222

    Article  PubMed  CAS  Google Scholar 

  • Zegeye A, Huguet L, Abdelmoula M, Carteret C, Mullet M, Jorand F (2007) Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity. Geochim Cosmochim Ac 71:5450–5462

    Article  CAS  Google Scholar 

  • Zou G, Boyer GL (2005) Synthesis and properties of different metal complexes of the siderophore desferriferricrocin. Biometals 18:63–74

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Majzlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Majzlan, J. (2013). Minerals and Aqueous Species of Iron and Manganese as Reactants and Products of Microbial Metal Respiration. In: Gescher, J., Kappler, A. (eds) Microbial Metal Respiration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32867-1_1

Download citation

Publish with us

Policies and ethics