Skip to main content

Molekulare Evolutionsforschung: Methoden, Phylogenie, Merkmalsevolution und Phylogeographie

  • Chapter
  • First Online:
Evolutionsbiologie

Zusammenfassung

Der britische Biologe Falkner untersuchte um 1900 immunologische Merkmale in Blutproben von Menschen und Menschenaffen (Schimpanse, Gorilla, Orang-Utan und Gibbon). Schon damals erkannte der Autor, dass Homo sapiens mit den afrikanischen Menschenaffen näher verwandt ist als mit den asiatischen Arten (s. Kap. 5). In Deutschland war es Paul Uhlenhuth, der 1901 als Erster Menschenblut mithilfe der Serologie von Tierblut unterscheiden konnte. 60 Jahre später wurden erneut Blutproben untersucht; dieses Mal wurden Blutproteine über die neu entwickelten Methoden der Proteinelektrophorese in ihre Einzelkomponenten aufgetrennt und die Aminosäuresequenzen ausgewählter Blutproteine in mühevoller Kleinarbeit über den Edman-Abbau bestimmt. Berühmte Forscher wie Pauling, Zuckerkandl und Goodman sind mit dieser frühen Phase der molekularen Evolutionsforschung (◘ Tab. 4.1) eng verbunden. Ab Mitte der 60er Jahre des 20. Jahrhunderts traten informativere DNA-Untersuchungen an die Stelle der Proteinanalyse, da die Aminosäuresequenzierung sehr aufwendig ist und da Proteine nah verwandter Arten oft keine Unterschiede aufweisen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adl SM et al. (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryotic Microbiol 52: 399–451

    Article  Google Scholar 

  • Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Amer J Bot 91: 1508–1522

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linnean Soc 161: 105–121

    Article  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigl JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: The mitochondrial DNA bridge between populations genetics and systematics. Ann Rev Ecol Syst 18: 489–522

    Google Scholar 

  • Bennett PM, Owens IPF (2002) Evolutionary ecology of birds. Oxford Univ Press, Oxford

    Google Scholar 

  • Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14: 2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Birkhead T (2001) Promiscuity: An Evolutionary History of Sperm Competition. Harvrad University Press

    Google Scholar 

  • Brown JW, Rest JS, Garcia-Moreno J, Sorenson MD, Mindell DP (2008) Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology 6: 1–18

    Article  Google Scholar 

  • Burleigh JG, Mathews S (2004) Phylogenetic signal in nucleotide data from seed plants: Implications for resolving the seed plant tree of life. Amer J Bot 91: 1599–1613

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2003) Only six kingdoms of life. Proc R Soc Lond B 271: 1251–1262

    Article  Google Scholar 

  • Cavalier-Smith T (2012) Kingdom protozoa and chromista and the eozoan root oft he eukaryotic tree. Biol Lett 6: 342–345

    Article  Google Scholar 

  • Cavalli-Sforza IL, Menozzi P, Piazza A (1994) The history and geography of human genes. Princeton Univ Press, Princeton/NJ

    Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG et al (1993) Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Garden 80: 528–580

    Article  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mehring C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311: 1283–1286

    Article  PubMed  CAS  Google Scholar 

  • Conner WE, Corcoran AJ (2012) Sound strategies: The 65-million-year-old battele between bats and insects. Annu Rev Entomol 57: 21–39

    Article  PubMed  CAS  Google Scholar 

  • Crane PR, Herendeen P, Friis EM (2004) Fossils and plant phylogeny. Amer J Bot 91: 1683–1699

    Article  Google Scholar 

  • Davis CC, Bell CD, Mathews S, Donoghue MJ (2002) Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. PNAS 99: 6833–6837

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439: 965–968

    Article  PubMed  CAS  Google Scholar 

  • Donoghue MJ, Ree RH, Baum DA (1998) Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Plant Sci 3: 311–317

    Article  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogenetic Interference Package Version 3.5.c). Dept Genet Univ Washington, Seattle

    Google Scholar 

  • Fitch WM, Atchley WR (1985) Evolution in inbred strains of mice appears rapid. Science 228: 1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origin of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268: 1492–1495

    Article  PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD (2012) Reevaluating the arthropod tree of life. Annu Rev Entomol 57: 167–186

    Article  PubMed  CAS  Google Scholar 

  • Göhlich UB, Chiappe LM (2006) A new carnivorous dinosaur from the Late Jurassic Solnhofen archipelago. Nature 440: 329–332

    Article  PubMed  Google Scholar 

  • Green AJ Figuerola J (2005) Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Div Distrib 11: 149–156

    Article  Google Scholar 

  • Gullan PJ, Cranston PS (2010) The Insects: An Outline of Entomology, 4. Aufl. Wiley-Blackwell, Oxford

    Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K.-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320: 1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Halanych KM (2004) The new view of animal phylogeny. Annu Rev Eco Evol Syst 35: 229–256

    Article  Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Reimer, Berlin

    Book  Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry, 4. Aufl. Academic Press, London

    Google Scholar 

  • Hardy ICW (2002) Sex ratios: Concepts and research methods. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Heidrich P, Amengual J, Wink M (1998) Phylogenetic relationships in Mediterranean and North Atlantic Puffinus Shearwaters (Aves: Procellariidae) based on nucleotide sequences of mtDNA. Biochem Syst Ecol 26: 145–170

    Article  CAS  Google Scholar 

  • Hillis DM, Huelsenbeck JP, Cunningham CW (1994) Application and accuracy of molecular phylogeny. Science 264: 671–676

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM, Pollock DD, McGuire JA, Zwickl DJ (2003) Is sparse taxon sampling a problem for phylogenetic inference? Syst Biol 52: 124–126

    Article  PubMed  Google Scholar 

  • Holzinger F, Wink M (1996) Mediation of cardiac glycoside insensitivity in the monarch (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na+, K+-ATPase. J Chem Ecol 22: 1921–1937

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics17: 754–755

    Article  PubMed  CAS  Google Scholar 

  • Hull DL (1997) The ideal species concept – and why we can’t get it. In: Claridge MF, Dawah HA, Wilson MR (Hrsg) Species: The Units of Biodiversity. Chapman & Hall, London, S. 357–380

    Google Scholar 

  • Käss E, Wink M (1997) Molecular phylogeny and phylogeography of the genus Lupinus (family Leguminosae) inferred from nucleotide sequences of the rbcL gene and ITS 1+2 sequences of rDNA. Plant Syst Evol 208: 139–167

    Article  Google Scholar 

  • Karp A, Isaac PG, Ingram DS (1998) Molecular tools for screening biodiversity. Chapman & Hall, London

    Google Scholar 

  • Keeling PJ (2003) Congruent evidence from alpha-tubulin and beta-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet & Biol 38: 298–309

    Article  CAS  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Amer J Bot 91: 1481–1493

    Article  Google Scholar 

  • König C, Weick F, Becking JH (2008) Owls of the world. Helm, London

    Google Scholar 

  • Lecointre G, Le Guayader H (2006) Biosystematik. Springer, Heidelberg

    Google Scholar 

  • Lenk P, Fritz U, Joger U, Wink M (1999) Mitochondrial phylogeography of the European Pond Turtle, Emys orbicularis (LINNAEUS, 1758). Molecular Ecology 8: 1911–1922

    Article  PubMed  CAS  Google Scholar 

  • Li WH, Wu CI, Luo CC (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2: 150–174

    PubMed  Google Scholar 

  • Li WH, Tanimura M, Sharp PM (1987) An evaluation oft he molceular clock hypothesis using mammalian DNA sequences. J Mol Evol 25: 330–342

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937–940

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1996) Phylogenetic analysis in molecular evolutionary genetics. Annu Rev Genet 30: 371–403

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Soltis DG, Chase MW (2004) The plant tree of life: An overview and some points of view. Amer J Bot 91: 1437–1445.

    Article  Google Scholar 

  • Posada D (2006) ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research 34: W700–W703

    Article  PubMed  CAS  Google Scholar 

  • Pryer KM, Schüttplez E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (Monilophytes) with a focus on the early leptosporangiate divergences. Amer J Bot 91: 1582–1598

    Article  CAS  Google Scholar 

  • de Queiroz A (2005) The resurrection of oceanic dispersal in historical biogeography. TREE 20: 68–73

    PubMed  Google Scholar 

  • Qiu YL, Palmer JD (1999) Phylogeny of early land plants: insights from genes and genomes. Trend Plant Sciences 4: 26–30

    Article  Google Scholar 

  • Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T (2011) Dating the arthropod tree based on large-scale transcriptome data. Mol Phylogen Evol 61: 880–887

    Article  Google Scholar 

  • Rosenberg M, Kumar S (2003) Taxon sampling, bioinformatics and phylogenomics. Syst Bio 52: 119–124

    Article  Google Scholar 

  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky L, Feldman MW (2002) Genetic structure of human populations. Science 298: 2381–2385

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal GA, Berenbaum MR (1991/1992) Herbivores: Their interactions with secondary plant metabolites, vol 1. The chemical participants, vol 2. Ecological and evolutionary processes. Academic Press, San Diego

    Google Scholar 

  • Rutschmann F (2006) Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Div Distrib 12: 35–48

    Article  Google Scholar 

  • Rydin C, Källersjö, Friis EM (2002) Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: Conflicting data, rooting problems, and the monophyly of conifers. Int J Plant Sci 163: 197–214

    Article  CAS  Google Scholar 

  • Sanderson MJ, Thorne JL, Wikström N, Bremer (2004) Molecular evidence on plant divergence times. Amer J Bot 91: 1656–1665

    Article  CAS  Google Scholar 

  • Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179: 1144–1147

    Article  PubMed  CAS  Google Scholar 

  • Schlegel M (2003) Phylogeny of eukaryotes recovered with molecular data: highlights and pitfalls. Europ J Protist 39: 113–122

    Article  Google Scholar 

  • Schneider D, Boppré M, Zweig J, Horsley SB, Bell TW, Meinwald J (1982) Scent organ development in Creatonotos moth: regulation by pyrrolizidine alkaloids. Science 215: 1264–1265

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Renzaglia K (2004) Phylogeny and diversification of bryophytes. Amer J Bot 91: 1557–1581

    Article  Google Scholar 

  • Shifferman EM (2012) It’s all in your head: the role of quantity estimation in sperm competetion. Proc R Soc B 279: 833–840

    Article  PubMed  Google Scholar 

  • Sibley C, Ahlquist JE (1990) Phylogeny and classification of birds. A study in molecular evolution. Yale Univ Press, New Haven London

    Google Scholar 

  • Sites JW, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 35: 199–227

    Article  Google Scholar 

  • Soltis DE, Soltis PS (2004) Amborella not a „basal angiosperm“? Not so fast. Amer J Bot 91: 997–1001

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2004) The origin an diversification of angiosperms. Amer J Bot 91: 1614–1624

    Article  Google Scholar 

  • Steinke D, Brede N (2006) Taxonomie des 21. Jahrhunderts. DNA-Barcoding. BIUZ 36: 40–46

    Article  Google Scholar 

  • Swofford DL (2003) PAUP: Phylogenetic analysis using parsimony, Version 4.0b10. Sinauer, Sunderland

    Google Scholar 

  • Takezaki N, Figueroa F, Zaleska-Rutczynska Z, Takahata N, Klein J (2004) The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. Mol Biol Evol 21: 1512–1524

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR (2001) Using phylogeographic analyses of gene trees to test species status and processes. Mol Ecol 10: 779–791

    Article  PubMed  CAS  Google Scholar 

  • Templeton A, Routman E, Phillips C (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140: 767–782

    PubMed  CAS  Google Scholar 

  • Wiesemüller B, Rothe H, Henke W (2003) Phylogenetische Systematik. Springer, Heidelberg

    Book  Google Scholar 

  • Wink M (1988) Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theoret Appl Genet 75: 225–233

    Article  CAS  Google Scholar 

  • Wink M (1993) Allelochemical properties and the raison d’être of alkaloids. In: Cordell G (Hrsg) The Alkaloids. Academic Press Vol 43: 1–118

    Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 3–19

    Article  PubMed  CAS  Google Scholar 

  • Wink M (2006) Schriftzeichen im Logbuch des Lebens: Molekulare Evolutionsforschung. BIUZ 36: 26–37

    Article  CAS  Google Scholar 

  • Wink M (2008a) Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr Drug Metabol 9: 996–1009

    Article  CAS  Google Scholar 

  • Wink M (2008b) Plant secondary metabolism: Diversity, function and its evolution. Natural Products Communications 3: 1205–1216

    CAS  Google Scholar 

  • Wink M (2010a) Functions and Biotechnology of plant secondary metabolites. Ann Plant Rev 39, Wiley-Blackwell

    Google Scholar 

  • Wink M (2010b) Biochemistry of plant secondary metabolism. Ann Plant Rev 40, Wiley-Blackwell,

    Google Scholar 

  • Wink M, Dyrcz A (1999) Mating systems in birds: a review of molecular studies. Acta Ornithologica 34: 91–109

    Google Scholar 

  • Wink M, Heidrich P (2009) Molecular evolution and systematics of owls (Strigiformes). In: König C, Weick F, Becking JH (Hrsg) Owls of the world. Pica, Tonbridge, S 39–57

    Google Scholar 

  • Wink MF, Botschen C, Gosmann H, Schäfer H, Waterman PG (2010) Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. In Wink M (Hrsg) Biochemistry of plant secondary metabolism. Ann Plant Rev 40, 2. Aufl: 364–433

    Google Scholar 

  • Wink M, Guicking D, Fritz U (2000) Molecular evidence for hybrid origin of Mauremys iversoni Pritchard et McCord, 1991 and Mauremys pritchardi McCord, 1997 (Reptilia: Testudines:Bataguridae). Zool Abh Staatl Mus Tierkunde Dresden 51: 41–49

    Google Scholar 

  • Wink M, von Nickisch-Rosenegk E, Legal L (1998) Comment. J Chem Ecol 24: 1285–1291

    Article  CAS  Google Scholar 

  • Xu X (2006) Scales, feathers and dinosaurs. Nature 440: 287–288

    Article  PubMed  CAS  Google Scholar 

  • Zahavi A, Zahavi A (1998) Signale der Verständigung. Das Handicap-Prinzip. Insel, Frankfurt am Main

    Google Scholar 

  • Zink R, McKitrick MC (1995) The debate over species concepts and its implications for ornithology. Auk 112: 701–719

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Volker Storch Prof. Dr. Dr. h. c. , Ulrich Welsch Prof. Dr. Dr. or Michael Wink Prof. Dr. .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Storch, V., Welsch, U., Wink, M. (2013). Molekulare Evolutionsforschung: Methoden, Phylogenie, Merkmalsevolution und Phylogeographie. In: Evolutionsbiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32836-7_4

Download citation

Publish with us

Policies and ethics