Skip to main content

Failure Mechanism and Control of Geotechnical Structures

  • Conference paper
Book cover Constitutive Modeling of Geomaterials

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

Geotechnical structures are characterized by magnificent scale and complicated configurations and working conditions. Reinforcement design is imperative for such complicated geotechnical structures. To make the reinforcement design effective and targeted, structural failure mechanism under certain actions must be analyzed because reinforcement is essentially aimed at failure control. The deformation reinforcement theory (DRT) provides a feasible solution to determine the structural failure mechanism and corresponding reinforcement force for failure control through elastoplastic finite element analysis. The central concept of DRT is the unbalanced force, which is a set of equivalent nodal forces representing the resistance deficiency of the structure to withstand given actions. The principle of minimum plastic complementary energy (PCE) is proposed: elastoplastic structures under given actions deform tending to the limit steady state at which the unbalanced force is minimized in the sense of PCE. At the limit steady state, the minimized distribution of the unbalanced force reflects the structural failure mechanism, including the failure position and pattern, and determines the optimal reinforcement force to prevent such failure. For geotechnical engineering, DRT can realize a quantitative and pinpoint reinforcement design method and suggest the principles for reinforcement effect evaluation and structural safety monitoring and forecasting. The physical meanings of the principle of minimum PCE and the limit steady state are preliminarily discussed in viscoplasticity and thermodynamics. Four numerical examples and one engineering application verified by geomechanical model test are presented to illustrate the major conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drucker, D.C., Greenberg, H.J., Prager, W.: Extended limit design theorems for continuous media. Quart. App. Math. 9, 381–389 (1952)

    MathSciNet  MATH  Google Scholar 

  2. Chen, H.F.: Limit Analysis and Soil Plasticity. Elsevier, Amsterdam (1975)

    MATH  Google Scholar 

  3. Kamenjarzh, J.A.: Limit Analysis of Solids and Structures. CRC Press, Florida (1996)

    MATH  Google Scholar 

  4. Duncan, J.M.: State of the art: limit equilibrium and finite-element analysis of slopes. J. Geotech. Engrg. ASCE 122, 577–596 (1996)

    Article  Google Scholar 

  5. Griffiths, D.V., Lane, P.A.: Slope stability analysis by finite elements. Geotechnique 49, 387–403 (1999)

    Article  Google Scholar 

  6. Dawson, E.M., Roth, W.H., Drescher, A.: Slope stability analysis by strength reduction. Geotechnique 49, 835–840 (1999)

    Article  Google Scholar 

  7. Potts, D.M., Zdravkovic, L.: Finite Element Analysis in Geotechnical Engineering, Application. Thomas Telford, London (2001)

    Book  Google Scholar 

  8. Bickford, J.H.: An Introduction to the Design and Behavior of Bolted Joints, 2nd edn. Marcel Dekker, New York (1990)

    Google Scholar 

  9. Ansell, A.: Chapter 2: A finite element model for dynamic analysis of shotcrete on rock subjected to blast induced vibrations. In: Bernard, E.S. (ed.) Proc. 2nd Int. Conf. Engrg. Dev., Shotcrete, Cairns, Queensland, Australia, pp. 15–25. Taylor & Francis (2004)

    Google Scholar 

  10. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The finite element method: its basis and fundamentals, 6th edn. Elsevier, Burlington (2005)

    MATH  Google Scholar 

  11. Yang, Q., Liu, Y.R., Chen, Y.R., Zhou, W.Y.: Deformation reinforcement theory and its application to high arch dams. Sci. China Ser. E—Tech. Sci. 51, 32–47 (2008)

    Article  MATH  Google Scholar 

  12. Yang, Q., Leng, K.D., Liu, Y.R.: Mechanical basis and engineering significance of deformation reinforcement theory. Rock and Soil Mech 32, 1–8 (2011)

    Google Scholar 

  13. Yang, Q., Leng, K.D., Liu, Y.R.: A finite element approach for seismic design of arch dam-abutment structures. Sci. China Ser. E—Tech. Sci. 54, 516–521 (2011)

    Article  MATH  Google Scholar 

  14. Liu, Y.R., Chang, Q., Yang, Q.: Fracture analysis of rock mass based on 3-D nonlinear Finite Element Method. Sci. China Ser. E—Tech. Sci. 54, 556–564 (2011)

    Article  MATH  Google Scholar 

  15. Yang, Q., Leng, K.D., Liu, Y.R.: Structural stability in deformation reinforcement theory—fundamentals and applications. In: Khalili, N., Oeser, M. (eds.) Proc. 13th Int. Conf. on Computer Methods and Advances in Geomechanics, Melbourne, Australia, pp. 28–35. Centre for Infrastruc. Eng. and Safety, Sydney (2011)

    Google Scholar 

  16. Guan, F.H., Liu, Y.R., Yang, Q., Yang, R.Q.: Analysis of stability and reinforcement of faults of Baihetan arch dam. Adv. Mater. Res. 243-249, 4506–4510 (2011)

    Article  Google Scholar 

  17. Liu, Y.R., Wang, C.Q., Yang, Q.: Stability analysis of soil slope based on deformation reinforcement theory. Finite Ele. Ana. Design 58, 10–19 (2012)

    Article  Google Scholar 

  18. Goodman, R.E., Shi, G.H.: Block theory and its application to rock engineering. Prentice Hall, London (1985)

    Google Scholar 

  19. O’Connor, D.T.P.: Practical Reliability Engineering, 4th edn. John Wiley & Sons, New York (2002)

    Google Scholar 

  20. Rice, J.R.: Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  MATH  Google Scholar 

  21. Yang, Q., Xue, L.J., Liu, Y.R.: Thermodynamics of infinitesimally constrained equilibrium states. ASME J. App. Mech. 76, 014502 (2009)

    Article  Google Scholar 

  22. Yang, Q., Bao, J.Q., Liu, Y.R.: Asymptotic stability in constrained configuration space for solids. J. Non-Equilib. Thermodyn. 34, 155–170 (2009)

    MATH  Google Scholar 

  23. Hill, R.: The mathematical theory of plasticity. Oxford University, London (1950)

    MATH  Google Scholar 

  24. Simo, J.C., Kennedy, J.G., Govindjee, S.: Non-smooth multisurface plasticity and viscoplasticity, Loading/unloading conditions and numerical algorithms. Int. J. Numer. Methods Engrg. 26, 2161–2185 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Macari, E.J., Weihe, S., Arduino, P.: Implicit integration of elastoplastic constitutive models for frictional materials with highly non-linear hardening functions. Mech. Cohesive-frictional Mater. 2, 1–29 (1997)

    Article  Google Scholar 

  26. Simo, J.C., Hughes, T.J.R.: Computational inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  27. Armero, F., Perez-Foguet, A.: On the formulation of closest-Point projection algorithms in elastoplasticity. Part I: The variational structure. Int. J. Numer. Methods Engrg. 53, 297–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Q., Yang, X.J., Chen, X.: On integration algorithm of perfect plasticity based on Drucker-Prager yield criterion. Engrg. Mech. 22, 15–19 (2005)

    Google Scholar 

  29. Chen, Z.Y.: On Pan’s principles of soil and rock stability analysis. J. of Tsinghua Univ. Sci. Tech. 38, 1–4 (1998)

    MATH  Google Scholar 

  30. Brown, E.T.: Putting the NATM into perspective. Tunnels & Tunnelling 22, 9–13 (1990)

    Google Scholar 

  31. Barton, N., Grimstad, E.: Rock mass conditions dictate the choice between NMT and NATM. Tunnels & Tunnelling 26, 39–42 (1994)

    Google Scholar 

  32. Radenkovic, D.: Limit theorems for a Coulomb material with a non-standard dilatation. Comptes Rendus de l’Académie des Sciences de Paris 252, 4103–4104 (1961)

    MathSciNet  MATH  Google Scholar 

  33. Gu, J.C., Chen, A.M., Xu, J.M., et al.: Model test study of failure patterns of anchored tunnel subjected to explosion load. Chinese J. Rock. Mech. Engrg. 27, 1315–1320 (2008)

    MathSciNet  Google Scholar 

  34. Zhou, W.Y., Yang, R.Q., Yan, G.R.: Stability evaluation methods and criteria in designing large arch dams. Design Hydroelec. Power Station 13, 1–7 (1997)

    MATH  Google Scholar 

  35. Barton, N., Lien, R., Lunde, J.: Engineering classification of rock masses for the design of tunnel support. Rock Mech. Rock Engrg. 6, 189–236 (1974)

    Google Scholar 

  36. Bieniawski, Z.T.: Engineering rock mass classifications: A complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley, Hoboken (1989)

    Google Scholar 

  37. Washizu, K.: Variational methods in elasticity and plasticity. Pergamon, Oxford (1975)

    MATH  Google Scholar 

  38. Perzyna, P.: Fundamental problems in viscoplasticity. Adv. App. Mech. 9, 243–377 (1966)

    Article  Google Scholar 

  39. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  40. Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  MATH  Google Scholar 

  41. Lubliner, J.: Plasticity Theory. Macmillan, New York (1990)

    MATH  Google Scholar 

  42. Zienkiewicz, O.C., Cormeau, T.C.: Viscoplasticity—plastic and creep in elastic solids—a unified numerical solution approach. Int. J. Numer. Methods Engrg. 8, 821–845 (1974)

    Article  MATH  Google Scholar 

  43. Silva, V.D.: A simple model for viscous regularization of elasto-plastic constitutive laws with softening. Commun. Numer. Methods Engng. 20, 547–568 (2004)

    Article  MATH  Google Scholar 

  44. Kachanov, L.M.: On Creep Rupture Time. Proc. Acad. Sci., USSR, Div. Eng. Sci. 8, 26–31 (1958)

    Google Scholar 

  45. Yang, Q., Chen, X., Zhou, W.Y.: Thermodynamic relationship between creep crack growth and creep deformation. J. Non-Equilib. Thermodyn. 30, 81–94 (2005)

    Article  MATH  Google Scholar 

  46. Edelen, D.G.B.: The College Station Lectures on Thermodynamics. Texas A&M University, College Station (1993)

    Google Scholar 

  47. Onsager, L.: Reciprocal relations in irreversible thermodynamics. I. Phys. Rev. 37, 405–426 (1931)

    Google Scholar 

  48. Rajagopal, K.R., Srinivasa, A.R.: On thermomechanical restrictions of continua. Proc. Math. Phys. Engrg. Sci. 460, 631–651 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Martyusheva, L.M., Seleznevb, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phy. Rep. 426, 1–45 (2006)

    Article  Google Scholar 

  50. Ziegler, H.: Some extremum principles in irreversible thermodynamics. In: Sneddon, N., Hill, R. (eds.) Prog. Solid Mech., vol. 4. North Holland, New York (1963)

    Google Scholar 

  51. Yang, Q., Tham, L.G., Swoboda, G.: Normality structures with homogeneous kinetic rate laws. ASME J. App. Mech. 72, 322–329 (2005)

    Article  MATH  Google Scholar 

  52. Yang, Q., Chen, X., Zhou, W.Y.: Microscopic thermodynamic basis of normality structure of inelastic constitutive relations. Mech. Res. Commun. 32, 590–596 (2005)

    Article  MATH  Google Scholar 

  53. Yang, Q., Xue, L.J., Liu, Y.R.: Multiscale Thermodynamic Basis of Plastic Potential Theory. ASME J. Engrg. Mater. Tech. 130, 044501 (2008)

    Article  Google Scholar 

  54. Yang, Q., Guan, F.H., Liu, Y.R.: Hamilton’s principle for Green-inelastic bodies. Mech. Res. Commun. 37, 696–699 (2010)

    Article  Google Scholar 

  55. Leng, K.D., Yang, Q.: Generalized Hamilton’s principle for inelastic bodies within non-equilibrium thermodynamics. Entropy 13, 1904–1915 (2011)

    Article  MathSciNet  Google Scholar 

  56. Yang, Q., Swoboda, G.: An energy-based damage model of geomaterials – I. Formulation and Numerical Results. Int. J. Solids Struct. 36, 1719–1734 (1999)

    MATH  Google Scholar 

  57. Yang, Q., Chen, X., Tham, L.G.: Relationship of crack fabric tensors of different orders. Mech. Res. Commun. 31, 661–666 (2004)

    Article  MATH  Google Scholar 

  58. Yang, Q., Swoboda, G., Zhao, D., Laabmayr, F.: Damage mechanics of jointed rock in in tunneling. In: Beer, G. (ed.) Numerical Simulation in Tunnelling, pp. 117–160. Springer, New York (2003)

    Chapter  Google Scholar 

  59. Oda, M.: Fabric tensors for discontinuous geological materials. Soils Foundat. 22, 96–108 (1982)

    Article  Google Scholar 

  60. Lydzba, D., Pietruszczak, S., Shao, J.F.: On anisotropy of stratified rocks: homogenization and fabric tensor approach. Comput. Geotech. 30, 289–302 (2003)

    Article  Google Scholar 

  61. Millet, O., Gu, S., Kondo, D.: A 4th order fabric tensor approach applied to granular media. Comput. and Geotech. 36, 736–742 (2009)

    Article  Google Scholar 

  62. Li, X., Yu, H.S.: Tensorial characterization of directional data in micromechanics. Int. J. Solids and Struct. 48, 2167–2176 (2011)

    Article  Google Scholar 

  63. Yang, Q., Xue, L.J.: Hydraulic Design Manual. In: Zhou, J.P., Dang, L.C. (eds.) Concrete Dam, 2nd edn., ch. 5, pp. 176–190. China Water & Power Press, Beijing (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Q., Leng, K.D., Chang, Q., Liu, Y.R. (2013). Failure Mechanism and Control of Geotechnical Structures. In: Yang, Q., Zhang, JM., Zheng, H., Yao, Y. (eds) Constitutive Modeling of Geomaterials. Springer Series in Geomechanics and Geoengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32814-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32814-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32813-8

  • Online ISBN: 978-3-642-32814-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics