Skip to main content

Solutions of Extraterrestrial Disturbances

  • Chapter
  • First Online:
Orbits
  • 1505 Accesses

Abstract

Solutions of extraterrestrial disturbances of solar radiation pressure, drag force of the atmosphere, and attracting forces of the sun, moon, and planets are given in this chapter. For convenience, the ephemeris of the sun and moon, as well as planets, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bate RR, Mueller DD, White JE (1971) Fundamentals of Astrodynamics. Dover Publications, New York

    Google Scholar 

  • Battin R.H. (1999) An Introduction to the Mathematics and Methods of Astrodynamics, revised version, AIAA Education Series

    Google Scholar 

  • Boccaletti D & Pucacco G, 2001, Theory of Oribts, Vol. 1: Integrable systems and non-perturbative methods; Vol. 2: Perturbative and geometrical methods, Springer Berlin

    Google Scholar 

  • Boulton WJ (1983) The effect of solar radiation pressure on the orbit of a cylindrical satellite, Planet. Space Sci 32(3):287–296

    Article  Google Scholar 

  • Bronstein IN, Semendjajew KA (1987) Taschenbuch der Mathematik. B.G. Teubner Verlagsgesellschaft, Leipzig, Germany. ISBN 3-322-00259-4

    Google Scholar 

  • Brouwer D, Clemence GM (1961) Methods of celestial mechanics. Academic Press, New York

    Google Scholar 

  • Chobotov VA (ed) (1991) Orbital mechanics. AIAA, Washington, D.C.

    Google Scholar 

  • Cui C (1990) Die Bewegung künstlicher Satelliten im anisotropen Gravitationsfeld einer gleichmässig rotierenden starren Modellerde. Deutsche Geodätische Kommission, Reihe C: Dissertationen, Heft Nr 357

    Google Scholar 

  • Desmars J, Arlot S, Arlot JE, Lainey V, Vienne A, 2009, Estimating the accuracy of satellite ephemrides using the bootstrap method, Astronomy & Astrophysics, Vol. 499 No.1

    Google Scholar 

  • Eberle J, Cuntz M, Musielak ZE (2008) The instability trasition for the restricted 3-body problem - I. Theoretical approach, Astronomy & Astrophysics, Vol. 489 No.3

    Google Scholar 

  • Harwood NM, Swinerd GG (1995) Long-periodic and secular perturbations to the orbit of a spherical satellite due to direct solar radiation pressure. Celestial Mechanics and Dynamical Astronomy 62:71–80

    Article  Google Scholar 

  • Herrick S (1972) Astrodynamics, vol II. Van Nostrand Reinhold, London

    Google Scholar 

  • Hughes S, 1977, Satellite Orbits Perturbed by Direct Solar Radiation Pressure: General Expansion of the Disturbing Function, Planet. Space Sci. Vol 25 pp 809–815

    Google Scholar 

  • Kaula WM (1966) 2001) Theory of satellite geodesy. Blaisdell Publishing Company, Dover Publications, New York

    Google Scholar 

  • Kezerashvili RY, Vazquez-Poritz J (2009) Solar Radiation Pressure and Deviations from Keplerian Orbits. Physics Letters B 675:18–21

    Article  Google Scholar 

  • King-Hele D (1964) Theory of satellite orbits in an atmosphere, Butterworths Mathematical Texts. Butterworths & Co. Publ, London

    Google Scholar 

  • Krivov AV, Sokolov LL, Dikarev VV (1996) Dynamics of Mars-Orbiting Dust: Effects if Light Pressure and Planetary Oblateness. Celestial Mechanics and Dynamical Astronomy 63:313–339

    Article  Google Scholar 

  • Kubo-oka T, Sengoku A (1999) Solar Radiation Pressure Model for the Relay Satellite of SELENE. Earth Planets Space 51:979–986

    Google Scholar 

  • Kudak VI, Klimik VU, Epishev VP (2010) Evalution of disturbances from solar radiation in orbital elements of geosychronous satellite based on harmonics. Astrophysical Bulletin 65(3):300–310

    Article  Google Scholar 

  • Kudryavtsev SM (2007) Long-term harmonic development of lunar ephemeris, Astronomy & Astrophysics, vol 472 No.2King RW, Masters EG, Rizos C, Stolz A, Collins J (1987) Surveying with Global Positioning System. Dümmler-Verlag, Bonn

    Google Scholar 

  • Levin E (1968) Solar radiation pressure perturbations of earth satellite orbits. AIAA Journal 6(1):120–12

    Article  Google Scholar 

  • Licandro J, Alvarenz-Candal A, Leon Jde, Pinilla-Aloso N, Lazzaro D, Hampins H, 2008, Spectral properties of asteroids in cometary orbits, Astronomy & Astrophysics, Vol. 481 No.3

    Google Scholar 

  • Lynden-Bell D, 2009, Analytical orbits in any central potential, MNRAS Vol. 402 Issue 3 (p1937-1941)Li H, Xu G, Xue H, Zhao H, Chen J,Wang G (1999) Design of GPS application program. Science Press, Peking, 337pp. ISBN 7-03-007204-9/TP.1049 (in Chinese and in C)

    Google Scholar 

  • McCarthy DD (1996) International Earth Rotation Service. In: IERS conventions, Paris, 95pp. IERS Technical Note No. 21

    Google Scholar 

  • Meeus J (1992) Astronomische Algorithmen. Johann Ambrosius Barth

    Google Scholar 

  • Montenbruck O (1989) Practical Ephemeris calculations. Springer-Verlag, Heidelberg

    Google Scholar 

  • Montenbruck O, Gill E (2000) Satellite Orbits: Models. Methods and Applications, Springer-Heidelberg

    Book  Google Scholar 

  • Musen P (1960) The Influence of the Solar Radiation Pressure on the Motion of an Artificial Satellite. Journal of Geophysical Research 65(5):1391–1396

    Article  Google Scholar 

  • Mysen E, 2009, On the predictability of unstable satellite motion around elongated elestial bodies, Astronomy & Astrophysics, Vol. 506 No.2

    Google Scholar 

  • Pal A, 2009, An analytical solution for Kepler’s problem, MNRAS Vol. 396 Issue 3 (p1737-1742)

    Google Scholar 

  • Parkinson RW, Jones HM, Shapiro II (1960) Effects of Solar Radiation Pressure on Earth Satellite Orbits. Science 131(3404):920–921

    Article  Google Scholar 

  • Saad Nadia A, Khalil Kh I, Amin Magdy Y (2010) Analytical Solution for the Combined Solar Radiation Pressure and Luni-Solar Effects on the Orbits of High Altitude Satellites. The Open Astronomy Journal 3(1):113–122

    Article  Google Scholar 

  • Schneider M, Cui CF (2005) Theoreme über Bewegungsintegrale und ihre Anwendung in Bahntheorien, Bayerischen Akad Wiss, Reihe A, Heft Nr. 121, 132pp, München

    Google Scholar 

  • Seeber G (2003) Satellite Geodesy: Foundations, Methods, and Applications. Walter de Gruyter, Berlin, 589pp

    Book  Google Scholar 

  • Torge W (1991) Geodesy. Walter de Gruyter, Berlin

    Google Scholar 

  • Touma JR, Tremaine S, Kazandjian MV, 2009, Gauss’s methods for secular dynamics, softened, MNRAS Vol. 394 Issue 1 (p 1085–1108)

    Google Scholar 

  • Vallado David A, 2007, Fundamentals of Astrodynamics and Applications (3rd Ed), Microcosm Press & Springer

    Google Scholar 

  • Van Kamp PD (1967) Principles of Astronomy. W.H. Freemann and Company, San Francisco, CA/London

    Google Scholar 

  • Vokrouhlický D, Milani A (2000) Direct Solar Radiation Pressure on orbits of small near-Earth asteroids: observable effects? A&A, v 362:746–755

    Google Scholar 

  • Vokrouhlicky D, Farinella P, Mignard F (1993) Solar radiation pressure perturbations for Earth satellites. I: A complete theory including penumbra transitions, A&A 280:295–312

    Google Scholar 

  • Vokrouhlicky D, Farinella P, Mignard F (1994) Solar radiation pressure perturbations for Earth satellites, II. an approximate method to model penumbra transitions and their long-term orbital effects on LAGEOS. A&A 285:333–343

    Google Scholar 

  • Wang LX, Fang ZD, Zhang MY, Lin GB, Gu LK, Zhong TD, Yang XA, She DP, Luo ZH, Xiao BQ, Chai H, Lin DX (1979) Mathematic handbook. Educational Press, Peking, ISBN 13012–0165

    Google Scholar 

  • Xu, G. (2007): GPS – Theory, Algorithms and Applications, second edition, Springer Heidelberg, ISBN 978-3-540-72714-9, 350 pages, in English

    Google Scholar 

  • Xu, G. (2008): Orbits, Springer Heidelberg, ISBN 978-3-540-78521-7, 230 pages, in English

    Google Scholar 

  • Xu G, Xu TH, Yeh TK, Chen W (2010a) Analytic Solution of Satellite Orbit Perturbed by Lunar and Solar Gravitation. MNRAS 410(1):645–653

    Article  Google Scholar 

  • Xu G, Xu TH, Chen W, Yeh TK (2010b) Analytic Solution of Satellite Orbit Perturbed by Atmospheric Drag. MNRAS 410(1):654–662

    Article  Google Scholar 

  • Zizka J, Vokrouhlicky D (2011) Solar radiation pressure on (99942) Apophis. Icarus 211(1):511–518

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, G., Xu, J. (2013). Solutions of Extraterrestrial Disturbances. In: Orbits. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32793-3_7

Download citation

Publish with us

Policies and ethics