Advertisement

Dependency Relations Labeller for Czech

  • Rudolf Rosa
  • David Mareček
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7499)

Abstract

We present a MIRA-based labeller designed to assign dependency relation labels to edges in a dependency parse tree, tuned for Czech language. The labeller was created to be used as a second stage to unlabelled dependency parsers but can also improve output from labelled dependency parsers. We evaluate two existing techniques which can be used for labelling and experiment with combining them together. We describe the feature set used. Our final setup significantly outperforms the best results from the CoNLL 2009 shared task.

Keywords

natural language processing dependency parsing sequence labelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of dependency parsers. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 91–98. Association for Computational Linguistics (2005)Google Scholar
  2. 2.
    Nivre, J., Hall, J., Nilsson, J.: Maltparser: A data-driven parser-generator for dependency parsing. In: Proceedings of LREC, vol. 6, pp. 2216–2219 (2006)Google Scholar
  3. 3.
    McDonald, R., Lerman, K., Pereira, F.: Multilingual dependency analysis with a two-stage discriminative parser. In: Proceedings of the Tenth Conference on Computational Natural Language Learning, CoNLL-X 2006, pp. 216–220. Association for Computational Linguistics, Stroudsburg (2006)CrossRefGoogle Scholar
  4. 4.
    Rosenfeld, B., Feldman, R., Fresko, M.: A systematic cross-comparison of sequence classifiers. In: SDM, pp. 563–567 (2006)Google Scholar
  5. 5.
    Crammer, K., Singer, Y.: Ultraconservative online algorithms for multiclass problems. The Journal of Machine Learning Research 3, 951–991 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    McDonald, R., Pereira, F.: Online learning of approximate dependency parsing algorithms. In: Proceedings of EACL, vol. 6, pp. 81–88 (2006)Google Scholar
  7. 7.
    Carreras, X.: Experiments with a higher-order projective dependency parser. In: Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL, vol. 7, pp. 957–961 (2007)Google Scholar
  8. 8.
    Collins, M., Ramshaw, L., Hajič, J., Tillmann, C.: A statistical parser for Czech. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, ACL 1999, pp. 505–512. Association for Computational Linguistics, Stroudsburg (1999)Google Scholar
  9. 9.
    Hajič, J., Hajičová, E., Panevová, J., Sgall, P., Pajas, P., Štěpánek, J., Havelka, J., Mikulová, M.: Prague Dependency Treebank 2.0. CD-ROM, Linguistic Data Consortium, LDC Catalog No.: LDC2006T0 1, Philadelphia (2006)Google Scholar
  10. 10.
    Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martí, M., Màrquez, L., Meyers, A., Nivre, J., Padó, S., Štěpánek, J., et al.: The CoNLL 2009 shared task: Syntactic and semantic dependencies in multiple languages. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning: Shared Task, pp. 1–18. Association for Computational Linguistics (2009)Google Scholar
  11. 11.
    Chen, W., Zhang, Y., Isahara, H.: A two-stage parser for multilingual dependency parsing. In: Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL, pp. 1129–1133 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rudolf Rosa
    • 1
  • David Mareček
    • 1
  1. 1.Faculty of Mathematics and Physics Institute of Formal and Applied LinguisticsCharles University in PraguePragueCzech Republic

Personalised recommendations