Skip to main content
  • 697 Accesses

Abstract

This introductory chapter demonstrates the topicality of the ultrastructural plasticity investigation—the direction this book is devoted to. It is warranted by the demand in new insights into the adaptation capabilities of species within microbial communities, primary determinants of the condition of microbial biosphere. The analysis of background for the advent and the development of this direction is carried out together with a modern-level discussion of the conception of ‘phenotypic plasticity’ of prokaryotes. The ultrastructural plasticity is considered as a component of the latter. Accordingly, the investigation of its manifestation diversity is suggested as a strategy of the elucidation of bacterial adaptive capabilities. The key role of the population approach in this methodology is emphasized taking into account the cell heterogeneity and basing on the conception of bacterial population as a cohesive self-regulated system. The choice of cyanobacteria as an object of investigation of the ultrastructural plasticity of prokaryotes is substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann M (2011) An evolutionary perspective on phenotypic heterogeneity in bacteria In: Abstracts of the 4th congress of european microbiologists FEMS 2011, Geneva, Switzerland, 26–30 June 2011

    Google Scholar 

  • Adams DG, Duggan PS (2012) Signalling in cyanobacteria–plant pymbioses. In: Perotto S, Baluška F (eds) Signaling and communication in plant symbiosis, signaling and communication in plants 11. Springer-Verlag, Berlin. doi:10.1007/978-3-642-32781-0_5

  • Baulina OI (2005) Ultrastructural plasticity of cyanobacteria. Doctoral dissertation, Institute of Microbiology, Russian Academy of Science, Moscow

    Google Scholar 

  • Baulina OI (2006) Population cytology and its role in research of life activity of procaryotes (in Russian). In: Proceedings of the international conference physiology of microorganisms in natural and experimental conditions, Lomonosov Moscow State University, Moscow, 16–19 May 2006

    Google Scholar 

  • Baulina OI (2008) Population cytology and its role in research of life activity of procaryotes. Moscow Univ Biol Sci Bull 63(1):32–39. doi:10.1007/s11966-008-1006-8

    Google Scholar 

  • Bazanova AV, Pinevich AV (2000) Complementary chromatic adaptation (non) trivial pigmented Chroococcales (in Russian). In: Proceedings of the international conference Autotrophic microorganisms, Lomonosov Moscow State University, Moscow, 13–15 Dec 2000

    Google Scholar 

  • Brown MRW, Williams P (1985) The influence of environment on envelope properties affecting survival of bacteria in infections. Ann Rev Microbiol 39(1):527–556

    Article  CAS  Google Scholar 

  • Colwell RR (2000) Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6(2):121–125. doi:10.1007/PL00012151

    Article  PubMed  CAS  Google Scholar 

  • Colwell RR, Brayton PR, Grimes DJ, Roszak DB, Huq SA, Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Nat Biotechnol 3(9):817–820. doi:10.1038/nbt0985-817

    Article  Google Scholar 

  • Costerton JW (1988) Structure and plasticity at various organization levels in the bacterial cell. Can J Microbiol 34(4):513–521

    Article  PubMed  CAS  Google Scholar 

  • Drews G (1973) Fine structure and chemical composition of the cell envelopes. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford

    Google Scholar 

  • Duda VI, Suzina NE, Polivtseva VN, Boronin AM (2012) Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology. Microbiology (Transl) 81(4):379–390. doi:10.1134/S0026261712040054

    Article  CAS  Google Scholar 

  • El-Registan GI (2005) Microbial population as multicellular organism. In: Bukharin OV, Gunzburg AL, Romanova JM, El-Registan GI (eds) Mechanisms of bacterial survival. Meditsina, Moscow (in Russian)

    Google Scholar 

  • El-Registan GI, Mulyukin AL, Nikolaev YA, Suzina NE, Gal’chenko VF, Duda VI (2006) Adaptogenic functions of extracellular autoregulators of microorganisms. Microbiology (Transl) 75(4):380–389. doi:10.1134/S0026261706040035

    Article  CAS  Google Scholar 

  • Epstein GV, Ravich-Birger ED, Svinkina AK (1936) On the structure of a bacterial colony. Report I. Histological study of the tubercle bacillus, colonies. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii 16(6):817–821 (in Russian)

    Google Scholar 

  • Fernández LA, Berenguer J (2000) Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol Rev 24(1):21–44. doi:10.1111/j.1574-6976.2000.tb00531.x

    Article  PubMed  Google Scholar 

  • Gamaleya NF (1894) Heterotrophic bacteria under the influence of lithium salts. Vrach 20:541–544 (in Russian)

    Google Scholar 

  • Gapochka LD (1981) On the adaptation of algae to a toxin action. Moscow State University, Moscow (in Russian)

    Google Scholar 

  • Gerasimenko LM, Ushatinskaya GT (2002a) Cyanobacteria, cyano-bacterial community, mats, biofilms. In: Rozanov A (ed) Bacterial paleontology. Paleontological Institute RAS, Moscow (in Russian)

    Google Scholar 

  • Gerasimenko LM, Ushatinskaya GT (2002b) The experiments on fossilization. Phosphatization. In: Rozanov A (ed) Bacterial paleontology. Paleontological Institute RAS, Moscow (in Russian)

    Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170(8):3584–3592

    PubMed  CAS  Google Scholar 

  • Golden SS (2003) Think like a bacterium. EMBO Rep 4(1):15–17. doi:10.1038/sj.embor.embor702

    Article  PubMed  CAS  Google Scholar 

  • Golecki JR, Drews G (1982) Supramolecular organization and composition of membranes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell, Oxford

    Google Scholar 

  • Golovlev EL (1998a) Another state of nonsporulating bacteria (in Russian). Mikrobiologiya 67(6):725–735

    Google Scholar 

  • Golovlev EL (1998b) Phenotype metastability in bacteria. Microbiology (Transl) 67(2):119–124

    CAS  Google Scholar 

  • Golovlev EL (1999) Academician Nikolai Dmtrievich Ierusalimskii (1901–1967) (in Russian). Mikrobiologiya 68(6):800–808

    Google Scholar 

  • Gorelova OA, Korzhenevskaya TG (2002) Formation of giant and ultramicroscopic forms of Nostoc muscorum CALU 304 during cocultivation with Rauwolfia tissues. Microbiology (Transl) 71(5):563–569. doi:10.1023/A:1020510803800

    Article  CAS  Google Scholar 

  • Gorlenko VM, Zhmur SI, Duda VI, Suzina NE, Osipov GA, Dmitriev VV (2000) Fine structure of fossilized bacteria in Volyn kerite. Origins Life Evol Biosph 30(6):567–577

    Article  CAS  Google Scholar 

  • Gromov BV (1976) Ultrastructure of blue-green algae. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Gromov BV (ed) (1986) The functional structure of cyanobacteria. Leningrad University, Leningrad (in Russian)

    Google Scholar 

  • Gusev MV (1966) Comparative physiology of blue-green algae. In: Successes of microbiology. Nauka, Moscow, (in Russian)

    Google Scholar 

  • Gusev MV (1968) Biology of the blue-green algae. Moscow State University, Moscow (in Russian)

    Google Scholar 

  • Gusev MV, Nikitina KA (1979) Cyanobacteria: physiology and metabolism. Nauka, Moscow (in Russian)

    Google Scholar 

  • Gusev MV, Baulina OI, Gorelova OA, Lobakova ES, Korzhenevskaya TG (2002) Artificial cyanobacterium-plant symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hellingwerf KJ (2004) A network of net-workers: report of the Euresco conference on ‘Bacterial Neural Networks’ held at San Feliu (Spain) from 8 to 14 May 2004. Mol Microbiol 54(1):2–13. doi:10.1111/j.1365-2958.2004.04321.x

  • Ierusalimskii ND (1952) The physiology of the development of pure bacterial cultures. Doctoral dissertation, Institute of Microbiology, Academy of Sciences of the USSR, Moscow

    Google Scholar 

  • Inge-Vechtomov SG (1989) Genetics with basics of breeding. Vysshaya Shkola, Mockow (in Russian)

    Google Scholar 

  • Ivanov VN, Ugodchikov GA (1984) Cell cycle of microorganisms and heterogeneity of their population. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Jensen TE (1993) Cyanobacterial ultrastructure. In: Berner T (ed) Ultrastructure of microalgae. CRC Press, Boca Raton

    Google Scholar 

  • Kondratyeva NV (1989) Morphology of prokaryotic algal populations. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Los DA, Suzuki I, Zinchenko VV, Murata N (2008) Stress responses in Synechocystis: regulated genes and regulatory systems. In: Herrero A, Flores E (eds) The Cyanobacteria. Molecular Biology, Genomics and Evolution. Caister Academic Press, Norfolk

    Google Scholar 

  • McDougald D, Rice SA, Weichart D, Kjelleberg S (1998) Nonculturability: adaptation or debilitation? FEMS Microbiol Ecol 25(1):1–9. doi:10.1111/j.1574-6941.1998.tb00455.x

    Article  CAS  Google Scholar 

  • Mulyukin AL, Demkina EV, Kryazhevskikh NA, Suzina NE, Vorob’eva LI, Duda VI, Galchenko VF, El-Registan GI (2009) Dormant forms of Micrococcus luteus and Arthrobacter globiformis not platable on standard media. Microbiology (Transl) 78(4):407–418. doi:10.1134/S0026261709040031

    Article  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740. doi:10.1126/science.276.5313.734

    Article  PubMed  CAS  Google Scholar 

  • Palińska KA, Krumbein WE (1994) Ecotype-phenotype-genotype. An approach to the Synechococcus-Synechocystis-Merismopedia-Eucapsis complex. Algological Studies/Archiv für Hydrobiologie, Supplement 75:213–227

    Google Scholar 

  • Paulsrud P, Lindblad P (1998) Sequence variation of the tRNALeu intron as a marker for genetic diversity and specificity of symbiotic syanobacteria in some lichens. Appl Environ Microbiol 64(1):310–315

    PubMed  CAS  Google Scholar 

  • Paumann M, Regelsberger G, Obinger C, Peschek GA (2005) The bioenergetic role of dioxygen and the terminal oxidase (s) in cyanobacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1707(2):231–253. doi:10.1016/j.bbabio.2004.12.007

  • Pechurkin NS, Bril’kov AV, Marchenkova TV (1990) Population aspects of biotechnology. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Peshkov MA (1955) Bacterial cytology. Akademii Nauk SSSR, Moscow-Leningrad (in Russian)

    Google Scholar 

  • Peshkov MA (1966) Comparative cytology of blue-green algae, bacteria and actinomycetes. Nauka, Moscow (in Russian)

    Google Scholar 

  • Pinevich AV (1992) Dynamic structure of Cyanophyta (Cyanobacteria) membrane apparatus. Algologiya 2:83–94 (in Russian)

    Google Scholar 

  • Prozorov AA (2001) Recombinational rearrangements in bacterial genome and bacterial adaptation to the environment. Microbiology (Transl) 70(5):501–512. doi:10.1023/A:1012301117863

    Article  CAS  Google Scholar 

  • Ravich-Birger ED (1936) Variation of microbes in the light of biological laws. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii 16(6):810–816 (in Russian)

    Google Scholar 

  • Schenk HEA (1992) Cyanobacterial symbioses. In: Ballows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York

    Google Scholar 

  • Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. BMC Evol Biol 11:45. doi:10.1186/1471-2148-11-45

    Article  PubMed  Google Scholar 

  • Schloter M, Lebuhn M, Heulin T, Hartmann A (2000) Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24(5):647–660. doi:10.1111/j.1574-6976.2000.tb00564.x

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JA, Dworkin M (eds) (1997) Bacteria as multicellular organisms. Oxford University Press, New York

    Google Scholar 

  • Stanier(Cohen-Bazire) G (1988) Fine structure of cyanobacteria. Methods Ensymol 167:157–172

    Article  Google Scholar 

  • Stevens SE Jr, Nierzwicki-Bauer SA (1991) The cyanobacteria. In: Stolz J (ed) Structure of the phototrophic prokaryotes. CRC Press, Inc, Boca Raton

    Google Scholar 

  • Suzina NE, Mulyukin AL, Loiko NG, Kozlova AN, Dmitriev VV, Shorokhova AP, Gorlenko VM, Duda VI, El’-Registan GI (2001) Fine structure of mummified cells of microorganisms formed under the influence of a chemical analogue of the anabiosis autoinducer. Microbiology (Transl) 70(6):667–677. doi:10.1023/A:1013183614830

    Article  CAS  Google Scholar 

  • Trevors JT, Psenner R (2001) From self-assembly of life to present-day bacteria: a possible role for nanocells. FEMS Microbiol Rev 25(5):573–582. doi:10.1111/j.1574-6976.2001.tb00592.x

    Article  PubMed  CAS  Google Scholar 

  • Vysotskii VV (2008) Medical ecology: an urgent problem. Triada-farm, Moscow (in Russian)

    Google Scholar 

  • Vysotskii VV, Zaslavskaya PL, Mashkovtseva AV, Baulina OI (1991) Polymorphism as a determinant pattern of the development of prokaryotic organism populations. Nauchnye Doklady Vysshei Shkoly Biologicheskie Nauki 12:5–18 (in Russian)

    Google Scholar 

  • Zavarzin GA (2002) The role of combinatorial events in the development of biodiversity. Priroda 1:12–19 (in Russian)

    Google Scholar 

  • Zavarzin GA (2004) Lectures on microbiology in natural sciences. Nauka, Moscow (in Russian)

    Google Scholar 

  • Zavarzin GA (2008) Microbial biosphere. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere Origin and Evolution. Springer, New York. doi:10.1007/978-3-642-32781-0_2

  • Zvyagintseva IS, Gerasimenko LM, Kostrikina NA, Bulygina ES, Zavarzin GA (1995) Interaction of halobacteria and cyanobacteria in a halophylic cyanobacterial community (in Russian). Mikrobiologiya 64(2):252–258

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga I. Baulina .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baulina, O.I. (2012). Introduction. In: Ultrastructural Plasticity of Cyanobacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32781-0_1

Download citation

Publish with us

Policies and ethics