Advertisement

Anaesthetic Management

  • Kyriakos Anastasiadis
  • Polychronis Antonitsis
  • Helena Argiriadou
Chapter

Abstract

Cardiopulmonary bypass (CPB) technology is relatively old. Since the first cardiac surgical operations in the early 1950s, improvements in oxygenator design, in coagulation monitoring and greater understanding of blood damage by flow rates and shear stresses have contributed to the relatively safe modern circuit. Despite all this refinement, CPB is still associated with systemic inflammatory response syndrome (SIRS), which is translated into myocardial, renal, pulmonary and neurologic dysfunction. However, although these effects are often subclinical, they can contribute to adverse postoperative outcome. Over the past 10 years, miniaturised extracorporeal circulation (MECC) has been developed targeting in reducing the side effects of conventional extracorporeal circulation (CECC). MECC has adopted all modern technology and translated the results from research in its structures. The net outcome from the use of these systems is reduced perioperative morbidity and reduced procedural mortality as has been recently demonstrated in our meta-analysis [1]. Anaesthetic techniques have always evolved with changes in surgical practice. Anaesthetic considerations regarding use of MECC in cardiac surgery are discussed in this chapter with the rational of enhanced recovery and implementation of fast track strategies based to the qualities of these systems.

Keywords

Systemic Inflammatory Response Syndrome Recruitment Manoeuvre Priming Volume Volatile Anaesthetic Agent Adverse Postoperative Outcome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anastasiadis K, Antonitsis P, Haidich AB, Argiriadou H, Deliopoulos A, Papakonstantinou C (2012) Use of minimal extracorporeal circulation improves outcome after heart surgery; a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol [Epub ahead of print]Google Scholar
  2. 2.
    Hall RI (2002) Cardiopulmonary bypass and the systemic inflammatory response: effects on drug action. J Cardiothorac Vasc Anesth 16:83–98PubMedCrossRefGoogle Scholar
  3. 3.
    Hynynen M, Takkunen O, Salmenperh M, Haataja H, Heinonen I (1986) Continuous infusion of fentanyl or alfentanil for coronary artery surgery. Plasma opiate concentrations, haemodynamics and postoperative course. Br J Anaesth 58:1252–1259PubMedCrossRefGoogle Scholar
  4. 4.
    Kussman BD, Zurakowski D, Sullivan L, McGowan FX, Davis PJ, Laussen PC (2005) Evaluation of plasma fentanyl concentrations in infants during cardiopulmonary bypass with low-volume circuits. J Cardiothorac Vasc Anesth 19:316–321PubMedCrossRefGoogle Scholar
  5. 5.
    Koren G, Crean P, Klein J, Goresky G, Villamater J, McLeod SM (1984) Sequestration of fentanyl by the cardiopulmonary bypass (CPBP). Eur J Clin Pharmacol 27:51–56PubMedGoogle Scholar
  6. 6.
    Hudson RJ, Thomson IR, Jassal R, Peterson DJ, Brown AD, Freedman JI (2003) Cardiopulmonary bypass has minimal effects on the pharmacokinetics of fentanyl in adults. Anesthesiology 99:847–854PubMedCrossRefGoogle Scholar
  7. 7.
    Wietasch JK, Scholz M, Zinserling J, Kiefer N, Frenkel C, Knüfermann P, Brauer U, Hoeft A (2006) The performance of a target-controlled infusion of propofol in combination with remifentanil: a clinical investigation with two propofol formulations. Anesth Analg 102:430–437PubMedCrossRefGoogle Scholar
  8. 8.
    Dixon J, Roberts FL, Tackley RM, Lewis GT, Connell H, Prys-Roberts C (1990) Study of the possible interaction between fentanyl and propofol using a computer controlled infusion of propofol. Br J Anaesth 64:142–147PubMedCrossRefGoogle Scholar
  9. 9.
    Pavlin DJ, Coda B, Shen DD, Tschanz J, Nguyen Q, Schaffer R, Donaldson G, Jacobson RC, Chapman CR (1996) Effects of combining propofol and alfentanil on ventilation, analgesia, sedation, and emesis in human volunteers. Anesthesiology 84:23–37PubMedCrossRefGoogle Scholar
  10. 10.
    Bauer M, Wilhelm W, Kraemer T, Kreuer S, Brandt A, Adams HA, Hoff G, Larsen R (2004) Impact of bispectral index monitoring on stress response and propofol consumption in patients undergoing coronary artery bypass surgery. Anesthesiology 101:1096–1104PubMedCrossRefGoogle Scholar
  11. 11.
    Schwilden H (1981) A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol 20:379–386PubMedCrossRefGoogle Scholar
  12. 12.
    Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88:1170–1182PubMedCrossRefGoogle Scholar
  13. 13.
    Minto CF, Schnider TW, Shafer SL (1997) Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology 86:24–33PubMedCrossRefGoogle Scholar
  14. 14.
    Steinlechner B, Dworschak M, Birkenberg B, Lang T, Schiferer A, Moritz A, Mora B, Rajek A (2007) Low-dose remifentanil to suppress haemodynamic responses to noxious stimuli in cardiac surgery: a dose-finding study. Br J Anaesth 98:598–603PubMedCrossRefGoogle Scholar
  15. 15.
    Egan TD (1995) Remifentanil pharmacokinetics and pharmacodynamics. A preliminary appraisal. Clin Pharmacokinet 29:80–94PubMedCrossRefGoogle Scholar
  16. 16.
    Patel SS, Spencer CM (1996) Remifentanil. Drugs 52:417–427PubMedCrossRefGoogle Scholar
  17. 17.
    Olivier P, Sirieix D, Dassier P, D’Attellis N, Baron JF (2000) Continuous infusion of remifentanil and target-controlled infusion of propofol for patients undergoing cardiac surgery: a new approach for scheduled early extubation. J Cardiothorac Vasc Anesth 14:29–35PubMedCrossRefGoogle Scholar
  18. 18.
    Steinlechner B, Koinig H, Grubhofer G, Ponschab M, Eislmeir S, Dworschak M, Rajek A (2005) Postoperative analgesia with remifentanil in patients undergoing cardiac surgery. Anesth Analg 100:1230–1235PubMedCrossRefGoogle Scholar
  19. 19.
    Richebé P, Pouquet O, Jelacic S, Mehta S, Calderon J, Picard W, Rivat C, Cahana A, Janvier G (2011) Target-controlled dosing of remifentanil during cardiac surgery reduces postoperative hyperalgesia. J Cardiothorac Vasc Anesth 25:917–925PubMedCrossRefGoogle Scholar
  20. 20.
    Schlaich N, Mertzlufft F, Soltesz S, Fuchs-Buder T (2000) Remifentanil and propofol without muscle relaxants or with different doses of rocuronium for tracheal intubation in outpatient anaesthesia. Acta Anaesthesiol Scand 44:720–726PubMedCrossRefGoogle Scholar
  21. 21.
    Hudson RJ, Ian R, Thomson IR, Henderson BT, Singh K, Harding G, Peterson DJ (2002) Cardiothoracic anesthesia, respiration and airway validation of fentanyl pharmacokinetics in patients undergoing coronary artery bypass grafting. Can J Anesth 49:388–392PubMedCrossRefGoogle Scholar
  22. 22.
    Westaby S, Pillai R, Parry A, O’ Regan D, Giannopoulos N, Grebenik K, Sinclair M, Fisher A (1993) Does modern cardiac surgery require conventional intensive care? Eur J Cardiothorac Surg 7:313–318PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng DCH, Karski J, Peniston C, Asokumar B, Raveendran G, Carroll J, Nierenberg H, Roger S, Mickle D, Tong J, Zelovitsky J, David T, Sandler A (1996) Morbidity outcome in early versus conventional tracheal extubation after coronary artery bypass grafting: a prospective randomized controlled trial. J Thorac Cardiovasc Surg 112:755–764PubMedCrossRefGoogle Scholar
  24. 24.
    Philipp A, Wiesenack C, Behr R, Schmid FX, Birnbaum DE (2002) High risk of intraoperative awareness during cardiopulmonary bypass with isoflurane administration via diffusion membrane oxygenators. Perfusion 17:175–178PubMedCrossRefGoogle Scholar
  25. 25.
    Wiesenack C, Wiesner G, Keyl C, Gruber M, Philipp A, Ritzka M, Prasser C, Taeger K (2002) In vivo uptake and elimination of isoflurane by different membrane oxygenators during cardiopulmonary bypass. Anesthesiology 97:133–138PubMedCrossRefGoogle Scholar
  26. 26.
    De Hert G, Van Der Linden PJ, Cromheecke S, Meeus R, Nelis A, Van Reeth V, Broecke PW, De Blier IG, Stockman BA, Rodrigus IE (2004) Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 101:299–310PubMedCrossRefGoogle Scholar
  27. 27.
    De Hert G, Van Der Linden PJ, Cromheecke S, Meeus R, ten Broecke PW, De Blier IG, Stockman BA, Rodrigus IE (2004) Choice of primary anesthetic regimen can influence intensive care unit length of stay after coronary surgery with cardiopulmonary bypass. Anesthesiology 101:9–20PubMedCrossRefGoogle Scholar
  28. 28.
    Julier K, da Silva R, Garcia C, estmann L, Frascarolo P, Zollinger A, Chassot PG, Schmid ER, Turina MI, von Segesser LK, Pasch T, Spahn DR, Zaugg M (2003) Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 98:1315–1327PubMedCrossRefGoogle Scholar
  29. 29.
    De Hert SG, ten Broecke PW, Mertens E, Van Sommeren EW, De Blier IG, Stockman BA, Rodrigus IE (2002) Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 97:42–49PubMedCrossRefGoogle Scholar
  30. 30.
    De Hert SG, Cromheecke S, ten Broecke PW, Mertens E, De Blier IG, Stockman BA, Rodrigus IE, Van der Linden PJ (2003) Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 99:314–323PubMedCrossRefGoogle Scholar
  31. 31.
    Cromheecke S, Pepermans V, Hendrickx E, Lorsomradee S, Ten Broecke PW, Stockman BA, Rodrigus IE, De Hert SG (2006) Cardioprotective properties of sevoflurane in patients undergoing aortic valve replacement with cardiopulmonary bypass. Anesth Analg 103:289–296PubMedCrossRefGoogle Scholar
  32. 32.
    Landoni G, Biondi-Zoccai GG, Zangrillo A, Bignami E, D’Avolio S, Marchetti C, Calabrò MG, Fochi O, Guarracino F, Tritapepe L, De Hert S, Torri G (2007) Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth 21:502–511PubMedCrossRefGoogle Scholar
  33. 33.
    De Hert S, Vlasselaers D, Barbe R, Ory JP, Dekegel D, Donnadonni R, Demeere JL, Mulier J, Wouters P (2009) A comparison of volatile and non volatile agents for cardioprotection during on-pump coronary surgery. Anaesthesia 64:953–960PubMedCrossRefGoogle Scholar
  34. 34.
    Kanbak M, Saricaoglu F, Akinci SB, Oc B, Balci H, Celebioglu B, Aypar U (2007) The effects of isoflurane, sevoflurane, and desflurane anesthesia on neurocognitive outcome after cardiac surgery: a pilot study. Heart Surg Forum 10:E36–E41PubMedCrossRefGoogle Scholar
  35. 35.
    Anastasiadis K, Argiriadou H, Kosmidis MH, Megari K, Antonitsis P, Thomaidou E, Aretouli E, Papakonstantinou C (2011) Neurocognitive outcome after coronary artery bypass surgery using minimal versus conventional extracorporeal circulation: a randomised controlled pilot study. Heart 97:1082–1088PubMedCrossRefGoogle Scholar
  36. 36.
    Anastasiadis K, Antonitsis P, Argiriadou H, Khayat A, Papakonstantinou C, Westaby S (2011) Use of minimal extracorporeal circulation circuit for left ventricular assist device implantation. ASAIO J 57:547–549PubMedCrossRefGoogle Scholar
  37. 37.
    Sakwa MP, Emery RW, Shannon FL, Altshuler JM, Mitchell D, Zwada D, Holter AR (2009) Coronary artery bypass grafting with a minimized cardiopulmonary bypass circuit: a prospective, randomized trial. J Thorac Cardiovasc Surg 137(2):481–485PubMedCrossRefGoogle Scholar
  38. 38.
    Train JJA (1992) Comment: determination of protamine dose. Anaesthesia 47:636–637PubMedCrossRefGoogle Scholar
  39. 39.
    DeLaria GA, Tyner JJ, Hayes CL, Armstrong BW (1994) Heparin-protamine mismatch. A controllable factor in bleeding after open heart surgery. Arch Surg 129:944–950PubMedCrossRefGoogle Scholar
  40. 40.
    Lindblad B (1989) Protamine sulphate: a review of its effects: hypersensitivity and toxicity. Eur J Vasc Surg 3:195–201PubMedCrossRefGoogle Scholar
  41. 41.
    Kirklin JK, Chenoweth DE, Naftel DC, Blackstone EH, Kirklin JW, Bitran DD, Curd JG, Reves JG, Samuelson PN (1986) Effects of protamine administration after cardiopulmonary bypass on complement, blood elements, and the hemodynamic state. Ann Thorac Surg 41:193–199PubMedCrossRefGoogle Scholar
  42. 42.
    Lundquist H, Hedenstierna G, Strandberg A, Tokics L, Brismar B (1995) CT-assessment of dependent lung densities in man during general anaesthesia. Acta Radiol 36:626–632PubMedCrossRefGoogle Scholar
  43. 43.
    Brismar B, Hedenstierna G, Lundquist H (1985) Pulmonary densities during anesthesia with muscular relaxation: a proposal of atelectasis. Anesthesiology 62:422–428PubMedCrossRefGoogle Scholar
  44. 44.
    Lindberg P, Gunnarsson L, Tokics L, Secher E, Lundquist H, Brismar B, Hedenstierna G (1992) Atelectasis and lung function in the postoperative period. Acta Anaesthesiol Scand 36:546–553PubMedCrossRefGoogle Scholar
  45. 45.
    Eichenberger AS, Proietti S, Wicky S, Frascarolo P, Suter M, Spahn DR, Magnusson L (2002) Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analg 95:1788–1792PubMedCrossRefGoogle Scholar
  46. 46.
    van Boven WJ, Gerritsen WB, Zanen P, Grutters JC, van Dongen HP, Bernard A, Aarts LP (2005) Pneumoproteins as a lung-specific biomarker of alveolar permeability in conventional on-pump coronary artery bypass graft surgery vs mini-extracorporeal circuit: a pilot study. Chest 127:1190–1195PubMedCrossRefGoogle Scholar
  47. 47.
    Tusman G, Böhm SH (2010) Prevention and reversal of lung collapse during the intra-operative period. Best Pract Res Clin Anaesthesiol 24:183–197PubMedCrossRefGoogle Scholar
  48. 48.
    Dorsa AG, Rossi AI, Thierer J, Lupiañez B, Vrancic JM, Vaccarino GN, Piccinini F, Raich H, Solange V, Bonazzi SV, Benzadon M, Daniel O, Navia DO (2011) Immediate extubation after off-pump coronary artery bypass graft surgery in 1,196 consecutive patients: feasibility, safety and predictors of when not to attempt it. J Cardiothorac Vasc Anesth 25:431–436PubMedCrossRefGoogle Scholar
  49. 49.
    Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ (2000) Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg 90:699–705PubMedCrossRefGoogle Scholar
  50. 50.
    Arain SR, Ruehlow RM, Uhrich TD, Ebert TJ (2004) The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesth Analg 98:153–158PubMedCrossRefGoogle Scholar
  51. 51.
    Khan ZP, Ferguson CN, Jones RM (1999) Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 54:146–165PubMedCrossRefGoogle Scholar
  52. 52.
    Maldonado J, Wysong A, van der Starre P, Block T, Miller C, Reitz BA (2009) Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics 50:206–217PubMedCrossRefGoogle Scholar
  53. 53.
    Unlugenc H, Gunduz M, Guler T, Yagmur O, Isik G (2005) The effect of pre-anaesthetic administration of intravenous dexmedetomidine on postoperative pain in patients receiving patient-controlled morphine. Eur J Anaesthesiol 22:386–391PubMedCrossRefGoogle Scholar
  54. 54.
    Venn RM, Karol MD, Grounds RM (2002) Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive caret. Br J Anaesth 88:669–675PubMedCrossRefGoogle Scholar
  55. 55.
    Bloor BC, Ward DS, Belleville JP, Maze M (1992) Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology 77:1134–1142PubMedCrossRefGoogle Scholar
  56. 56.
    Aantaa R, Kanto J, Scheinin M, Kallio A, Scheinin H (1990) Dexmedetomidine, an alpha 2-adrenoceptor agonist, reduces anesthetic requirements for patients undergoing minor gynecologic surgery. Anesthesiology 73:230–235PubMedCrossRefGoogle Scholar
  57. 57.
    Lin TF, Yeh YC, Lin FS, Wang YP, Lin CJ, Sun WZ, Fan SZ (2009) Effect of combining dexmedetomidine and morphine for intravenous patient-controlled analgesia. Br J Anaesth 102:117–122PubMedCrossRefGoogle Scholar
  58. 58.
    Straka Z, Brucek P, Vanek T, Votava J, Widimsky P (2002) Routine immediate extubation for off-pump coronary artery bypass grafting without thoracic epidural analgesia. Ann Thorac Surg 74:1544–1547PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kyriakos Anastasiadis
    • 1
  • Polychronis Antonitsis
    • 1
  • Helena Argiriadou
    • 1
  1. 1.Department of Cardiothoracic SurgeryAHEPA University Hospital Aristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations