Skip to main content

Descriptors as Probes for Inter-Molecular Interactions and External Perturbation

  • Chapter
  • First Online:
Applications of Density Functional Theory to Chemical Reactivity

Part of the book series: Structure and Bonding ((STRUCTURE,volume 149))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauling L (1967) The nature of chemical bond and structure of molecule and crystals. the nature of chemical bond and structure of molecule and crystals. Oxford New Delhi and IBH

    Google Scholar 

  2. Mc Weeny R (1979) Coulson’s valence. Oxford University Press, Oxford

    Google Scholar 

  3. Maksic ZB (ed) (1990) Theoretical models of chemical bonding: the concept of the chemical bond. Springer, Berlin

    Google Scholar 

  4. Fukui K (1975) Theory of orientation and stereo selection. Springer, Berlin

    Google Scholar 

  5. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20(1):129–154

    CAS  Google Scholar 

  6. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  7. Chandra AK, Geerlings P, Nguyen MT (1997) On the asynchronism of isocyanide addition to dipolarophiles: application of local softness. J Org Chem 62(18):6417–6419

    CAS  Google Scholar 

  8. De Sekhar H, Krishnamurty S, Pal S (2010) Understanding the reactivity properties of Aun (6 < n < 13) clusters using density functional theory based reactivity descriptors. J Phys Chem C 114(14):6690–6703

    Google Scholar 

  9. Mignon P, Loverix S, Steyaert J, Geerlings P (2005) Influence of the π–π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases. Nucleic Acids Res 33(6):1779–1789

    CAS  Google Scholar 

  10. Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Electrophilicity index as a possible descriptor of biological activity. Bioorg Med Chem 12(21):5533–5543

    CAS  Google Scholar 

  11. Chandra AK, Nguyen MT (2007) Use of DFT-based reactivity descriptors for rationalizing radical addition reactions: applicability and difficulties. Faraday Discuss 135:191–201

    CAS  Google Scholar 

  12. Geerlings P, Vivas-Reyes R, De PF, Biesemans M, Willem R (2003) DFT based reactivity descriptors and their application to the study of organotin compounds. NATO Sci Ser, II 116:461–495

    CAS  Google Scholar 

  13. Roy RK, Saha S (2010) Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu Rep Prog Chem, Sect C: Phys Chem 106:118–162

    CAS  Google Scholar 

  14. Roy RK (2004) On the reliability of global and local electrophilicity descriptors. J Phys Chem A 108(22):4934–4939

    CAS  Google Scholar 

  15. Boon G, De PF, Langenaeker W, Geerlings P (1998) The use of density functional theory-based reactivity descriptors in molecular similarity calculations. Chem Phys Lett 295(1,2):122–128

    CAS  Google Scholar 

  16. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Edu 64(7):561

    CAS  Google Scholar 

  17. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    CAS  Google Scholar 

  18. Yang W, Parr RG (1985) Proc Natl Acad Sci USA 82:6273

    Google Scholar 

  19. Pearson RG (1993) The principle of maximum hardness. Acc Chem Res 26(5):250

    CAS  Google Scholar 

  20. Harbola MK (1992) Magic numbers for metallic clusters and the principle of maximum hardness. Proc Natl Acad Sci USA 89(3):1036–1039

    CAS  Google Scholar 

  21. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    CAS  Google Scholar 

  22. Sen KD (ed) (1993) Chemical hardness (structure and bonding), vol 80. Springer, Berlin

    Google Scholar 

  23. Chattaraj PK (ed) (2009) Ayers PW, Yang W, Bartolotti LJ. In chemical reactivity theory: A density functional view. Chemical reactivity theory. CRC; Boca Raton, Florida, pp. 255–268

    Google Scholar 

  24. Nalewajski RF (2005) Fukui function as correlation hole. Chem Phys Lett 410(4–6):335–338

    CAS  Google Scholar 

  25. Gal T, Geerlings P, De PF, Torrent-Sucarrat M (2011) A new approach to local hardness. Phys Chem Chem Phys 13(33):15003–15015

    CAS  Google Scholar 

  26. Chandra AK, Nguyen MT (2009) Fukui function and local softness as reactivity descriptors. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC, Boca Raton, FL, pp 163–178

    Google Scholar 

  27. Chandrakumar SKR, Pal S (2002) DFT and local reactivity descriptor studies on the nitrogen sorption selectivity from air by sodium and calcium exchanged zeolite-A Colloids and Surfaces, A 205 (1–2):127–138

    Google Scholar 

  28. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113(5):1854–1855

    CAS  Google Scholar 

  29. Pal S, Vaval N, Roy R (1993) Principle of maximum hardness: an accurate ab initio study. J Phys Chem 97(17):4404–4406

    CAS  Google Scholar 

  30. Makov G (1995) Chemical hardness in density functional theory. J Phys Chem 99(23):9337–9339

    CAS  Google Scholar 

  31. Sebastian KL (1994) On the proof of the principle of maximum hardness. Chem Phys Lett 231(1):40–42

    CAS  Google Scholar 

  32. Liu S, Parr RG (1997) Second-order density-functional description of molecules and chemical changes. J Chem Phys 106(13):5578–5586

    CAS  Google Scholar 

  33. Roy RK, Chandra AK, Pal S (1995) Hardness as a function of polarizability in a reaction profile. J Mol Struct (THEOCHEM) 331(3):261–265

    CAS  Google Scholar 

  34. Toro-Labbe A (1999) Characterization of chemical reactions from the profiles of energy, chemical potential, and hardness. J Phys Chem A 103(22):4398–4403

    CAS  Google Scholar 

  35. Roy R, Chandra AK, Pal S (1994) Correlation of polarizability, hardness, and electronegativity: polyatomic molecules. J Phys Chem 98(41):10447–10450

    CAS  Google Scholar 

  36. Gazquez JL (1997) Activation energies and softness additivity. J Phys Chem A 101(48):8967–8969

    CAS  Google Scholar 

  37. Gazquez JL (1997) Bond energies and hardness differences. J Phys Chem A 101(49):9464–9469

    CAS  Google Scholar 

  38. Pal S, Roy R, Chandra AK (1994) Change of hardness and chemical potential in chemical binding: a quantitative model. J Phys Chem 98(9):2314–2317

    CAS  Google Scholar 

  39. Kar R, Chandrakumar KRS, Pal S (2007) The Influence of electric field on the global and local reactivity descriptors: reactivity and stability of weakly bonded complexes. J Phys Chem A 111(2):375–383

    CAS  Google Scholar 

  40. Pal S, Chandra AK (1995) Some novel relationships of polarizability with dipole moments. J Phys Chem 99(38):13865–13867

    CAS  Google Scholar 

  41. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    CAS  Google Scholar 

  42. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    CAS  Google Scholar 

  43. Gazquez JL, Mendez F (1994) The hard and soft acids and bases principle: an atoms in molecules viewpoint. J Phys Chem 98(17):4591–4593

    CAS  Google Scholar 

  44. Mendez F, Gazquez JL (1994) Chemical reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116(20):9298–9301

    CAS  Google Scholar 

  45. Langenaeker W, Coussement N, De Proft F, Geerlings P (1994) Quantum chemical study of the influence of isomorphous substitution on the catalytic activity of zeolites: an evaluation of reactivity indexes. J Phys Chem 98(11):3010–3014

    CAS  Google Scholar 

  46. Damoun S, Van de Woude G, Mendez F, Geerlings P (1997) Local softness as a regioselectivity indicator in [4 + 2] cycloaddition reactions. J Phys Chem A 101(5):886–893

    CAS  Google Scholar 

  47. Krishanmurthy S, Roy RK, Vetrivel R, Iwata S, Pal SJ (1997) The local hard − soft acid − base principle: a critical study. Phys Chem A 101:7253–7257

    Google Scholar 

  48. Chandra AK, Michalak A, Nguyen MT, Nalewajski RFJ (1998) Regional matching of atomic softnesses in chemical reactions: a two-reactant charge sensitivity study. Phys Chem A 102(49):10182–10188

    CAS  Google Scholar 

  49. Chandra AK, Nguyen MT (1998) Density Functional Approach to Regiochemistry, Activation Energy, and Hardness Profile in 1,3-Dipolar Cycloadditions. J Phys Chem A 102(30):6181–6185

    CAS  Google Scholar 

  50. Chandra AK, Nguyen MT (1997) J Chem Soc Perkin Trans 2:1415

    Google Scholar 

  51. Pal S, Chandrakumar KRS (2000) Critical study of local reactivity descriptors for weak interactions: an qualitative and quantitative analysis of adsorption of molecules in the Zeolite lattice. J Am Chem Soc 122(17):4145–4153

    CAS  Google Scholar 

  52. Chandrakumar KRS, Pal S (2002) Study of local hard-soft acid-base principle to multiple-site interactions. J Phys Chem A 106(23):5737–5744

    CAS  Google Scholar 

  53. Chandrakumar KRS, Pal S (2001) A novel theoretical model for molecular recognition of multiple-site interacting systems using density response functions. J Phys Chem B 105(20):4541–4544

    CAS  Google Scholar 

  54. Roy RK, Pal S, Hirao K (1999) On non-negativity of Fukui function indices. J Chem Phys 110(17):8236–8245

    CAS  Google Scholar 

  55. Roy RK, Hirao K, Pal S (2000) On non-negativity of Fukui function indices. II. J Chem Phys 113(4):1372–1379

    Google Scholar 

  56. Tanwar A, Pal S (2005) Separability of local reactivity descriptors. J Chem Sci 117(5):497–505

    CAS  Google Scholar 

  57. Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: carbonyl compounds. J Phys Chem A 102(21):3746–3755

    CAS  Google Scholar 

  58. Tanwar A, Bagchi B, Pal S (2006) Interaction induced shifts in O–H stretching frequency of water in halide-ion water clusters: A microscopic approach with a bond descriptor. J Chem Phys 125(21):214304–214310

    Google Scholar 

  59. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):864–871

    Google Scholar 

  60. Sen KD, JØrgensen CK (eds) (1987) Electronegativity, Structure and Bonding, vol 66. Springer, Berlin

    Google Scholar 

  61. Mulliken RS (1934) New electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2(11):782–794

    CAS  Google Scholar 

  62. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68(8):3801–3807

    CAS  Google Scholar 

  63. Pearson RG (1999) Maximum chemical and physical hardness. J Chem Educ 76(2):267–275

    CAS  Google Scholar 

  64. Pearson RG (1986) Proc Natl Acad Sci USA 83:8440

    CAS  Google Scholar 

  65. Huheey JE (1965) The electronegativity of groups. J Phys Chem 69(10):3284–3291

    CAS  Google Scholar 

  66. Sanderson RT (1952) An interpretation of bond lengths in alkali halide gas molecules. J Am Chem Soc 74:272–274

    CAS  Google Scholar 

  67. Sanderson RT (1976) Chemical bonds and bond energies. Academic, New York

    Google Scholar 

  68. Sanderson RT (1951) An interpretation of bond lengths and a classification of bonds. Science 114:670–672

    CAS  Google Scholar 

  69. Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Waroquier M, Tollenaere JP (2002) The electronegativity equalization method i: parametrization and validation for atomic charge calculations. J Phys Chem A 106(34):7887–7894

    CAS  Google Scholar 

  70. Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Van Alsenoy C, Tollenaere JP (2002) The electronegativity equalization method ii: applicability of different atomic charge schemes. J Phys Chem A 106(34):7895–7901

    CAS  Google Scholar 

  71. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113(5):1855–1856

    CAS  Google Scholar 

  72. Datta D (1992) Hardness profile of a reaction path. J Phys Chem 96(6):2409–2410

    CAS  Google Scholar 

  73. Chattaraj PK, Liu GH, Parr RG (1995) The maximum hardness principle in the Gyftopoulos-Hatsopoulos three-level model for an atomic or molecular species and its positive and negative ions. Chem Phys Lett 237(1,2):171–176

    CAS  Google Scholar 

  74. Chattaraj PK, Nath S, Sannigrahi AB (1994) Hardness, chemical potential, and valency profiles of molecules under internal rotations. J Phys Chem 98(37):9143–9148

    CAS  Google Scholar 

  75. Cardenas-Jiron GI, Lahsen J, Toro-Labbe A (1995) Hardness profile and activation hardness for rotational isomerization processes. 1. application to nitrous acid and hydrogen persulfide. J Phys Chem 99(15):5325–5330

    CAS  Google Scholar 

  76. Cardenas-Jiron GI, Lahsen J, Toro-Labbe A (1995) Hardness profile and activation hardness for rotational isomerization processes. 2. The maximum hardness principle. J Phys Chem 99(34):12730–12738

    CAS  Google Scholar 

  77. Gazquez JL, Martinez A, Mendez F (1993) Relationship between energy and hardness differences. J Phys Chem 97(16):4059–4063

    CAS  Google Scholar 

  78. Ghanty TK, Ghosh SK (1996) A density functional approach to hardness, polarizability, and valency of molecules in chemical reactions. J Phys Chem 100(30):12295–12298

    CAS  Google Scholar 

  79. Ghanty TK, Ghosh SK (2000) Molecular hardness, polarizability and valency variation of formamide and thioformamide on internal rotation: a density functional study. J Phys Chem A 104(13):2975–2979

    CAS  Google Scholar 

  80. Pearson RG, Palke WE (1992) Support for a principle of maximum hardness. J Phys Chem 96(8):3283–3285

    CAS  Google Scholar 

  81. Chattaraj PK, Nath S, Sannigrahi AB (1993) Ab initio SCF study of maximum hardness and maximum molecular valency principles. Chem Phys Lett 212(3–4):223–230

    CAS  Google Scholar 

  82. Komorowski L (1987) Empirical evaluation of chemical hardness. Chem Phys Lett 134(6):536–540

    CAS  Google Scholar 

  83. Komorowski L (1987) Electronegativity and hardness in the chemical approximation. Chem Phys 114(1):55–71

    CAS  Google Scholar 

  84. Sen KD, Bohm MC, Schmidt PC (1987) Electronegativity of atoms and molecular fragments. In: Sen KD (ed) Structure and Bonding, vol 66. Springer, Berlin, pp 99–123

    Google Scholar 

  85. Vinayagam SC, Sen KD (1988) CF 2+2 and CF2+, two unusually stable dications with carbon-fluorine double bonding. Chem Phys Lett 144(2):178–181

    CAS  Google Scholar 

  86. Politzer P (1987) A relationship between the charge capacity and the hardness of neutral atoms and groups. J Chem Phys 86(2):1072–1073

    CAS  Google Scholar 

  87. Poltizer P, Grice MD, Murray JS (2001) Electronegativities, electrostatic potentials and covalent radii. J Mol Struct (THEOCHEM) 549(1–2):69–76

    Google Scholar 

  88. Politzer P, Huheey JE, Murray JS, Grodzicki M (1992) Electronegativities and electronaffinity. J Mol Struct (THEOCHEM) 259–265(4–5):99–104

    Google Scholar 

  89. Van Genechten K, Mortier WJ, Geerlings P (1987) Intrinsic framework electronegativity: a novel concept in solid state chemistry. J Chem Phys 86(9):5063–5071

    Google Scholar 

  90. Zunger A, Cohen ML (1979) First-principles nonlocal-pseudopotential approach in the density-functional formalism. II. Application to electronic and structural properties of solids. Phys Rev B 20(10):4082–4108

    CAS  Google Scholar 

  91. Poltizer P, Parr RG, Murphy DR (1983) Relationships between atomic chemical potentials, electrostatic potentials, and covalent radii. J Chem Phys 79(8):3859–3861

    Google Scholar 

  92. Ghanty TK, Ghosh SK (1996) New scale of atomic orbital radii and its relationship with polarizability, electronegativity, other atomic properties, and bond energies of diatomic molecules. J Phys Chem 100(30):17429–17433

    CAS  Google Scholar 

  93. Poltizer P, Parr RG, Murphy DR (1985) Approximate determination of Wigner-Seitz radii from free-atom wave functions. Phys Rev B 31(10):6809–6812

    Google Scholar 

  94. Ghanty TK, Ghosh SK (1994) Hardness and other properties. J Phys Chem 100(21):8801–8807

    Google Scholar 

  95. Ghanty TK, Ghosh SK (1994) Simple density functional approach to polarizability, hardness, and covalent radius of atomic systems. J Phys Chem 98(37):9197–9201

    CAS  Google Scholar 

  96. Ghanty TK, Ghosh SK (1996) A new simple approach to the polarizability of atoms and ions using frontier orbitals from the Kohn-Sham density functional theory. J Mol Struct (THEOCHEM) 366(1–2):139–144

    CAS  Google Scholar 

  97. Ganguly P (1993) Simple interrelationship between crystal radii, pseudopotential orbital radii, and interatomic distances in elements. J Am Chem Soc 115(20):9287–9288

    CAS  Google Scholar 

  98. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694

    CAS  Google Scholar 

  99. Zhang Y, Yang W (2000) Perspective on “Density-functional theory for fractional particle number: derivative discontinuities of the energy”. Theor Chim Acta 103(3):346–348

    CAS  Google Scholar 

  100. Nalewajski RF, Parr RG (2000) Information theory, atoms in molecules, and molecular similarity. Proc Natl Acad Sci 97(16):8879–8882

    CAS  Google Scholar 

  101. Ayers PW, Parr RG (2008) Local hardness equalization: Exploiting the ambiguity. J Chem Phys 128(18):184108–184116

    Google Scholar 

  102. Roy RK, Hirao K, Krishnamurty S, Pal S (2001) Mulliken population analysis based evaluation of condensed Fukui function indices using fractional molecular charge. J Chem Phys 115(7):2901–2907

    Google Scholar 

  103. Mulliken RS (1955) Electronic population analysis on LCAO [Single Bond] MO molecular wave functions I. J Chem Phys 23(10):1833–1840

    CAS  Google Scholar 

  104. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11(3):361–373

    CAS  Google Scholar 

  105. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    CAS  Google Scholar 

  106. Bonaccorsi R, Scrocco E, Tomasi J (1970) Molecular SCF calculations for the ground state of some three-membered ring molecules: (CH2)3, (CH2)2NH, (CH2)2NH +2 , (CH2)2O, (CH2)2S, (CH)2CH2, and N2CH2. J Chem Phys 52(10):5270–5284

    CAS  Google Scholar 

  107. Cioslowski J (1989) A new population analysis based on atomic polar tensors. J Am Chem Soc 111(22):8333–8336

    CAS  Google Scholar 

  108. Cioslowski J, Martinov M, Mixon ST (1993) Atomic Fukui indexes from the topological theory of atoms in molecules applied to Hartree-Fock and correlated electron densities. J Phys Chem 97(42):10948–10951

    CAS  Google Scholar 

  109. Cioslowski J, Hay PJ, Ritchie JP (1990) Charge distributions and effective atomic charges in transition-metal complexes using generalized atomic polar tensors and topological analysis. J Phys Chem 94(1):148–151

    CAS  Google Scholar 

  110. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  111. Bader RFW, Becker P (1988) Transferability of atomic properties and the theorem of Hohenberg and Kohn. Chem Phys Lett 148(5):452–458

    CAS  Google Scholar 

  112. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138

    CAS  Google Scholar 

  113. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. New York

    Google Scholar 

  114. Löwdin PO (1970) On the nonorthogonality problem. In: Löwdin PO (ed), Adv Quant Chem 5:185–199

    CAS  Google Scholar 

  115. Saha S, Roy RK, Ayers PW (2009) Are the Hirshfeld and Mulliken population analysis schemes consistent with chemical intuition? Int J Quantum Chem 109(9):1790–1806

    CAS  Google Scholar 

  116. John AP, Martin H-G, Krishnan R (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87(10):5968–5975

    Google Scholar 

  117. Gustavo ES, Henry FS III (1989) Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? J Chem Phys 90(7):3700–3703

    Google Scholar 

  118. Arulmozhiraja S, Kolandaivel P (1997) Condensed Fukui function: dependency on atomic charges. Mol Phys 90(1):55–62

    CAS  Google Scholar 

  119. Misra GP, Sannigrahi AB (1996) A comparison of condensed Fukui function, free valency and unpaired spin population as reactivity indices for open-shell molecules. J Mol Struct (THEOCHEM) 361(1–3):63–68

    CAS  Google Scholar 

  120. Kar T, Sannigrahi AB (2000) Local reactivity indices of free radicals: Ab initio Hartree-Fock and Kohn-Sham density functional calculations. Ind J Chem A39:68–74

    Google Scholar 

  121. Nalewajski RF, Korchowiec J, Michalak A (1996) In density functional theory, IV. In: Nalewajski RF (ed) Topics in current chemistry, vol 183. Springer, Berlin, p 25

    Google Scholar 

  122. Parr RG, Parr JB (1999) Kenichi Fukui: recollections of a friendship. Theor Chim Acta 102(1):4–6

    CAS  Google Scholar 

  123. Yang W, Parr RG, Pucci R (1984) Electron density, Kohn–Sham frontier orbitals, and Fukui functions. J Chem Phys 81(6):2862–2863

    CAS  Google Scholar 

  124. Flurchick K, Bartolotti L (1995) Visualizing properties of atomic and molecular systems. J Mol Graph 13(1):10–13

    CAS  Google Scholar 

  125. Chattaraj PK, Cedillo A, Parr RG (1995) Fukui function from a gradient expansion formula, and estimate of hardness and covalent radius for an atom. J Chem Phys 103(24):10621–10626

    CAS  Google Scholar 

  126. Pacios LF (1997) Study of a gradient expansion approach to compute the Fukui function in atoms. Chem Phys Lett 276(5–6):381–387

    CAS  Google Scholar 

  127. Pacios LF, Gómez PC (1998) Radial behavior of gradient expansion approximation to atomic Fukui function and shell structure of atoms. J Comput Chem 19(5):488–503

    CAS  Google Scholar 

  128. Chattaraj Pratim K, Andres C, Parr Robert G (1995) Variational method for determining the Fukui function and chemical hardness of an electronic system. J Chem Phys 103(17):7645–7646

    Google Scholar 

  129. De Proft F, Geerlings P, Liu S, Parr RG (1999) Variational calculation of the global hardness and the Fukui Function via an approximation of the hardness Kernel. Pol J Chem 72:1737–1746

    Google Scholar 

  130. Michalak A, De Proft F, Geerlings P, Nalewajski RF (1999) Fukui functions from the relaxed Kohn Sham orbitals. J Phys Chem A 103(6):762–771

    CAS  Google Scholar 

  131. Roy RK, de Proft F, Geerlings P (1998) Site of protonation in aniline and substituted anilines in the gas phase: a study via the local hard and soft acids and bases concept. J Phys Chem A 102(35):7035–7040

    CAS  Google Scholar 

  132. Krishnamurty S, Pal S (2000) Intermolecular reactivity trends using the concept of group softness. J Phys Chem A 104(32):7639–7645

    CAS  Google Scholar 

  133. Shetty S, Kar R, Kanhere DG, Pal S (2005) Intercluster reactivity of metalloaromatic and antiaromatic compounds and their applications in molecular electronics: a theoretical investigation. J Phys Chem A 110(1):252–256

    Google Scholar 

  134. Pople JA (1976) Int J Quant Chem Symp 10:1

    CAS  Google Scholar 

  135. Pople JAE (1976) Structure, and reactivity. Wiley, New York

    Google Scholar 

  136. Cederbaum LS, Alon OE, Streltsov AI (2006) Coupled-cluster theory for systems of bosons in external traps. Phys Rev A 73(4):043609–043622

    Google Scholar 

  137. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1874

    CAS  Google Scholar 

  138. Fuentealba P, Cedillo A (1999) The variations of the hardness and the Kohn-Sham Fukui function under an external perturbation. J Chem Phys 110(20):9807–9811

    CAS  Google Scholar 

  139. Senet P (1996) Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground-state electronic density. J Chem Phys 105(15):6471–6489

    CAS  Google Scholar 

  140. Senet P (1997) Kohn-Sham orbital formulation of the chemical electronic responses, including the hardness. J Chem Phys 107(7):2516–2524

    CAS  Google Scholar 

  141. Israelachvili J (1992) Intermolecular Surface Forces 2nd ed. London.

    Google Scholar 

  142. Bockris JOM, Reddy AKN (1973) Modern electrochemistry, vol 2. Plenum, New York

    Google Scholar 

  143. Sauer J (1989) Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts. Chem Rev 89(1):199–255

    CAS  Google Scholar 

  144. van Santen RA, Kramer GJ (1995) Reactivity theory of zeolitic broensted acidic sites. Chem Rev 95(3):637–660

    Google Scholar 

  145. Kreuzer HJ, Wang LC (1990) Field-induced surface chemistry of NO. J Chem Phys 93(8):6065–6069

    CAS  Google Scholar 

  146. Ernst N, Drachsel W, Li Y, Block JH, Kreuzer HJ (1986) Field adsorption of helium on tungsten. Phys Rev Lett 57(21):2686–2689

    CAS  Google Scholar 

  147. Eckert M, Zundel G (1987) Proton polarizability, dipole moment, and proton transitions of an AH…B.dblharw. A-…H + B proton-transfer hydrogen bond as a function of an external electrical field: an ab initio SCF treatment. J Phys Chem 91(20):5170–5177

    CAS  Google Scholar 

  148. Hill TL (1958) Some possible biological effects of an electric field acting on nucleic acids or proteins. J Am Chem Soc 80(9):2142–2147

    CAS  Google Scholar 

  149. Kar R, Pal S (2008) Electric field response of molecular reactivity descriptors: a case study. Theor Chim Acta 120(4):375–383

    CAS  Google Scholar 

  150. Nalewajski RF (1984) Electrostatic effects in interactions between hard (soft) acids and bases. J Am Chem Soc 106(4):944–945

    CAS  Google Scholar 

  151. Li Y, Evans JNS (1995) The Fukui function: a key concept linking frontier molecular orbital theory and the hard-soft-acid-base principle. J Am Chem Soc 117(29):7756–7759

    CAS  Google Scholar 

  152. Gazquez JL (1997) The hard and soft acids and bases principle. J Phys Chem A 101(26):4657–4659

    CAS  Google Scholar 

  153. Datta D (1992) On Pearson’s HSAB principle. Inorg Chem 31(13):2797–2800

    CAS  Google Scholar 

  154. Dutta M (1999) The use of electronegativity and hardness towards understanding Pearson’s hard-soft acid-base principle. Asian J Chem 11(1):198–202

    CAS  Google Scholar 

  155. Datta D, Singh SN (1991) Pearson’s chemical hardness, heterolytic dissociative version of Pauling’s bond-energy equation and a novel approach towards understanding Pearson’s hard-soft acid-base principle. J Chem Soc Dalton Trans 6:1541–1549

    Google Scholar 

  156. Chattaraj PK, Schleyer PvR (1994) An ab initio study resulting in a greater understanding of the HSAB principle. J Am Chem Soc 116(3):1067–1071

    CAS  Google Scholar 

  157. Chattaraj PK, Gomez B, Chamorro E, Santos J, Fuentealba P (2001) Scrutiny of the HSAB principle in some representative acid base reactions. J Phys Chem A 105(38):8815–8820

    CAS  Google Scholar 

  158. Shoeib T, Gorelsky SI, Lever ABP, Siu KWM, Hopkinson AC (2001) When does the hard and soft acid base principle apply in the gas phase? Inorg Chim Acta 315(2):236–239

    CAS  Google Scholar 

  159. Shoeib T, El Aribi H, Siu KWM, Hopkinson AC (2001) A study of silver (I) ion organonitrile complexes: an ion structures, binding energies, and substituent effects. J Phys Chem A 105(4):710–719

    CAS  Google Scholar 

  160. Chandrakumar KRS, Pal S (2003) Study of local hard-soft acid-base principle: effects of basis set, electron correlation, and the electron partitioning method. J Phys Chem A 107(30):5755–5762

    CAS  Google Scholar 

  161. Chandrakumar KRS, Pal S (2002) The concept of density functional theory based descriptors and its relation with the reactivity of molecular systems. A semi-quantitative study. Int J Mol Sci 3(4):324–337

    CAS  Google Scholar 

  162. Mendez F, Gazquez JL (1994) The Fukui function of an atom in a molecule: a criterion for characterizing the reactive sites of chemical species. Proc Ind Acad Sci Chem Sci 106:183–193

    CAS  Google Scholar 

  163. Damoun S, Van de WG, Choho K, Geerlings P (1999) Influence of alkylating reagent softness on the regioselectivity in enolate ion alkylation: a theoretical local hard and soft acids and bases study. J Phys Chem A 103(39):7861–7866

    CAS  Google Scholar 

  164. Mendez F, Tamariz J, Geerlings P (1998) 1,3-dipolar cycloaddition reactions: A DFT and HSAB principle theoretical model. J Phys Chem A 102(31):6292–6296

    CAS  Google Scholar 

  165. Chandrakumar KRS, Pal S (2002) A systematic study on the reactivity of Lewis acid-base complexes through the local hard-soft acid-base principle. J Phys Chem A 106(48):11775–11781

    CAS  Google Scholar 

Download references

Acknowledgement

The author acknowledges Mr. Susanta Das and Ms. Deepti Mishra for their help in preparation and critical proof reading of this manuscript. The author also acknowledges the help of Ms. Asha Shinde in providing secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pal, S. (2012). Descriptors as Probes for Inter-Molecular Interactions and External Perturbation. In: Putz, M., Mingos, D. (eds) Applications of Density Functional Theory to Chemical Reactivity. Structure and Bonding, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32753-7_4

Download citation

Publish with us

Policies and ethics