Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 150))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D-MEDNEs:

Three-dimensional Markovian electron delocalization negentropies

3D-QSAR:

Three-dimensional quantitative structure activity relationship

ADME:

Allied toxicological physicochemical and absorption Disposition Metabolism and Excretion

AHH:

Aryl hydrocarbon hydroxylase

Amax:

Maximum acceptor superdelocalizability

ArHs:

Aryl-hydrocarbon receptors

CDFT:

Conceptual density functional theory

CoMFA:

Comparative molecular field analysis

CPs:

Chlorophenols

DFT:

Density functional theory

DNA:

Deoxyribonucleic acid

EPR:

Electron paramagnetic resonance

ESIP:

Element specific influence parameter

HCV:

Hepatitis C Virus

HIV:

Human Immunodeficiency Virus

HPA:

Hirschfield population analysis

MD:

Molecular dynamics

MEP:

Minimum electrophilicity principle

MMP:

Minimum magnetizability principle

MPA:

Mulliken population analysis

MPP:

Minimum polarizability principle

MTD:

Minimum topological difference

NICS:

Nucleus independent chemical shift

NMR:

Nuclear magnetic resonance

NPA:

Natural population analysis

NQR:

Nuclear quadruple resonance

PCA:

Principal component analysis

PCBs:

Polychlorinated biphenyls

PCDFs:

Polychlorinated dibenzofurans

PMH:

Principle of maximum hardness

QC:

Quantum chemistry

QM/MM:

Quantum mechanical/molecular mechanics

QSAR:

Quantitative structure–activity relationship

QSPR:

Quantitative structure–property relationship

QSRR:

Quantitative structure–retention relationships

QSTR:

Quantitative structure–toxicity relationship

QTMS:

Quantum topological molecular similarity

SAR:

Structure–activity relationship

SCC-DFTB:

Self-consistent charge density functional tight binding

SCF-MO:

Self-consistent field molecular orbital

STR:

Structure toxicity relationship

TQSI:

Topological quantum similarity index

VSMP:

Variable selection and modeling method based on the prediction

References

  1. Schultz TW, Cronin MTD, Walker JD, Aptula AO (2003) J Mol Struct Theochem 622:1–22

    Article  CAS  Google Scholar 

  2. Schultz TW, Cronin MTD, Netzeva TI (2003) J Mol Struct Theochem 622:23–38

    Article  CAS  Google Scholar 

  3. Gombar VK, Mattioni BE, Zwickl C, Deahl JT (2006) Computational approaches for assessment of toxicity: a historical perspective and current status. In: Ekins S (ed) Computational toxicology: risk assessment for pharmaceutical and environmental chemicals. Wiley, Hoboken, NJ

    Google Scholar 

  4. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V (2009) Excli J 8:74–88

    Google Scholar 

  5. Selassie C, Verma RP (2010) History of quantitative structure–activity relationships. In: Abraham D (ed) Burger’s medicinal chemistry, drug discovery and development. Wiley, New York, pp 1–95

    Google Scholar 

  6. Kar S, Roy K (2010) J Indian Chem Soc 87:1455–1515

    CAS  Google Scholar 

  7. Cronin MTD (2010) Recent advances in QSAR studies: challenges and advances. In: Puzyn T; Leszczynski J, Cronin MT (eds) Computational chemistry and physics, vol 8. Springer, Berlin, pp 3–11

    Google Scholar 

  8. Karcher W, Devillers J (1990) SAR and QSAR in environmental chemistry and toxicology: scientific tool or wishful thinking? In: Karcher W, Devillers J (eds) Practical applications of quantitative structure–activity relationships (QSAR) in environmental chemistry and toxicology. Kluwer Academic, Dordrecht, pp 1–12

    Google Scholar 

  9. Selassie CD, Mekapati SB, Verma RP (2002) QSAR: then and now. Curr Top Med Chem 2:1357–1379

    Article  CAS  Google Scholar 

  10. Roy K, Mitra I (2009) Expert Opin Drug Discov 4:1157–1175

    Article  CAS  Google Scholar 

  11. Hammett LP (1935) Chem Rev 17:125–136

    Article  CAS  Google Scholar 

  12. Hammett LP (1937) J Am Chem Soc 59:96–103

    Article  CAS  Google Scholar 

  13. Taft RW (1956) Separation of polar, steric and resonance effects in reactivity. In: Newman MS (ed) Steric effects in organic chemistry. Wiley, New York, pp 556–675

    Google Scholar 

  14. Hansch C (1993) Acc Chem Res 26:147–153

    Article  CAS  Google Scholar 

  15. Hansch C, Hoekman D, Gao H (1996) Chem Rev 96:1045–1075

    Article  CAS  Google Scholar 

  16. Lien EJ, Hansch C, Anderson SM (1968) J Med Chem 11:430–441

    Article  CAS  Google Scholar 

  17. Hansch C, Klein T (1986) Acc Chem Res 19:392–400

    Article  CAS  Google Scholar 

  18. Hansch C, Kim D, Leo AJ, Norellino E, Silipo C, Vittoria A (1989) CRC Crit Rev Toxicol 19:185–226

    Article  CAS  Google Scholar 

  19. Langridge R, Klein TE (1990) Molecular graphics and drug design. In: Hansch C, Sammes PG, Taylor JB, Ramsden CA (eds) Comprehensive medicinal chemistry, vol 4. Pergamon, Oxford, pp 413–429

    Google Scholar 

  20. Blaney JM, Hansch C (1990) Application of molecular graphics to the analysis of macromolecular structure. In: Hansch C, Sammes PG, Taylor JB, Ramsden CA (eds) Comprehensive medicinal chemistry, vol 4. Pergamon, Oxford, p 459

    Google Scholar 

  21. Debnath AK, Shusterman AJ, DeCompadre RLL, Hansch C (1994) Mutat Res 305:63–72

    Article  CAS  Google Scholar 

  22. Hansch C, Leo A (1995) QSAR in metabolism. In: Heller SR (ed) Exploring QSAR, fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC, pp 299–343

    Google Scholar 

  23. Hansch C, Telzer BR, Zhang L (1995) Crit Rev Toxicol 25:67–89

    Article  CAS  Google Scholar 

  24. Hansch C, Gao H (1997) Chem Rev 97:2995–3059

    Article  CAS  Google Scholar 

  25. Hansch C, Gao H, Hoekman D (1998) In: Devillers J (ed) Comparative QSAR. Taylor and Francis, London, pp 285–368

    Google Scholar 

  26. Gao H, Katzenellenbogen JA, Garg R, Hansch C (1999) Chem Rev 99:723–744

    Article  CAS  Google Scholar 

  27. Hansch C, Kurup A, Garg R, Gao H (2001) Chem Rev 101:619–672

    Article  CAS  Google Scholar 

  28. Hansch C, Fujita T (1995) Status of QSAR at the end of the twentieth century. In: Hansch C, Fujita T (eds) Classical and three-dimensional QSAR in a agrochemistry. American Chemical Society, Washington, DC, pp 1–12

    Google Scholar 

  29. Hansch C, Leo A (1995) QSAR of nonspecific toxicity. In: Heller SR (ed) Exploring QSAR, fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC, pp 169–221

    Google Scholar 

  30. Kubinyi H (1997) Drug Discov Today 2:538–546

    Article  CAS  Google Scholar 

  31. Martin YC (1998) Perspect Drug Discov Des 12:3–23

    Article  Google Scholar 

  32. Norinder U (1998) Perspect Drug Discov Des 12:15–39

    Article  Google Scholar 

  33. Maddalena DJ (1998) Expert Opin Ther Pat 8:249–258

    Article  CAS  Google Scholar 

  34. Garg G, Gupta SP, Gao H, Babu MS, Debnath AK, Hansch C (1999) Chem Rev 99:3525–3601

    Article  CAS  Google Scholar 

  35. Voskresensky ON, Levitsky AP (2002) Curr Med Chem 9:367–1383

    Article  Google Scholar 

  36. Yang GF, Huang X (2006) Curr Pharm Des 12:4601–4611

    Article  CAS  Google Scholar 

  37. Bajot F (2010) The use of QSAR and computational methods in drug design. In: Puzyn T, Leszczynski J, Cronin MTD (eds) Recent advances in QSAR studies—methods and applications. Springer, Dordrecht, pp 261–282

    Chapter  Google Scholar 

  38. Winkler DJ (2002) Brief Bioinform 3(1):73–86

    Article  CAS  Google Scholar 

  39. Didziapetris R, Reynolds DP, Japertas P, Zmuidinavicius D, Petrauskas A (2006) Curr Comput Aid Drug Design 2:95–103

    Article  CAS  Google Scholar 

  40. Roy K, Ghosh G (2010) Curr Pharm Des 16:2625–2639

    Article  CAS  Google Scholar 

  41. Ajay Walters WP, Murcko MA (1998) J Med Chem 41:3314–3324

    Google Scholar 

  42. Wiese M, Pajeva IK (2001) Curr Med Chem 8(6):685–713

    Article  CAS  Google Scholar 

  43. Schultz TW, Seward JR (2000) Sci Total Environ 249(1–3):73–84

    Article  CAS  Google Scholar 

  44. Benigni R, Giuliani A, Franke R, Gruska A (2000) Chem Rev 100(10):3697–3714

    Article  CAS  Google Scholar 

  45. Bashir SJ, Maibach HI (2000) Biochem Modulation Skin React 2000:61–64

    Google Scholar 

  46. Cronin MTD (2000) Curr Opin Drug Discov Dev 3(3):292–297

    CAS  Google Scholar 

  47. Garg R, Kurup A, Hansch C (2001) Crit Rev Toxicol 31(2):223–245

    Article  CAS  Google Scholar 

  48. Freidig AP, Hermens JLM (2001) Quant Struct Activ Relat 19(6):547–553

    Article  Google Scholar 

  49. Gombar VK, Enslein K (1996) J Chem Inf Comput Sci 36(6):1127–1134

    Article  CAS  Google Scholar 

  50. Agatonovic-kustrin S, Beresford R, Yusof A, Pauzi M (2001) J Pharm Biomed Anal 25(2):227–237

    Google Scholar 

  51. Brusic V, Bucci K, Schonbach C, Petrovsky N, Zeleznikow J, Kazura JW (2001) J Mol Graph Modell 19(5):405–411

    Article  CAS  Google Scholar 

  52. Burden FR, Winkler DA (2000) Mol Model Predict Bioact (Proceedings of the 12th European symposium on quantitative structure-activity relationships), pp 175–180

    Google Scholar 

  53. Lewis DFV (2000) Toxicology 144(1–3):197–203

    Article  CAS  Google Scholar 

  54. Vedani A, Dobler M (2000) Prog Drug Res 55:105–13

    Article  CAS  Google Scholar 

  55. Guba W, Cruciani G (2000) Mol Model Predict Bioact (Proceedings of the 12th European Symposium on Quantitative Structure-Activity Relationships), pp 89–94

    Google Scholar 

  56. Leo AJ, Hansch C (1999) Perspect Drug Discov Des 17:1–25

    Article  CAS  Google Scholar 

  57. Warne MA, Nicholson JK (1999) Prog Environ Sci 1(4):327–344

    CAS  Google Scholar 

  58. Gupta SP (2000) Prog Drug Res 55:235–282

    Article  CAS  Google Scholar 

  59. Klebe G (2000) J Mol Med 78(5):269–281

    Article  CAS  Google Scholar 

  60. Podlogar BL, Ferguson DM (2000) Drug Des Discov 17(1):4–12

    CAS  Google Scholar 

  61. Lien EJ, Ren S (2000) Phytochem Bioact Agents 2000:21–41

    Google Scholar 

  62. Mickle T, Nair V (2000) Drugs Future 25(4):393–400

    Article  CAS  Google Scholar 

  63. Hadjipavlou-Litina D (2000) Curr Med Chem 7(4):375–388

    Google Scholar 

  64. Kurup A, Garg R, Hansch C (2000) Chem Rev 100(3):909–924

    Google Scholar 

  65. Livingstone DJ (2000) J Chem Inf Comput Sci 40(2):195–209

    Article  CAS  Google Scholar 

  66. Katritzky AR, Petrukhin R, Tatham D, Basak S, Benfenati E, Karelson M, Maran U (2001) J Chem Inf Comput Sci 41(3):679–685

    Article  CAS  Google Scholar 

  67. Winkler DA, Burden FR (2002) Application of neutral networks to large dataset QSAR, virtual screening and library design. In: Bellavance L (ed) Combinatorial chemistry methods and protocols. Humana, Totowa, NJ

    Google Scholar 

  68. Schultz TW, Carlson RE, Cronin MTD, Hermens JLM, Johnson R, O’Brien PJ, Roberts DW, Siraki A, Wallace KD, Veith GD (2006) SAR QSAR Environ Res 17:413–428

    Article  CAS  Google Scholar 

  69. Gerberick F, Aleksic M, Basketter DA, Casati S, Karlberg A-T, Kern PS, Kimber I, Lepoittevin J-P, Natsch A, Ovigne JM, Rovida C, Sakaguchi H, Schultz TW (2008) ATLA Altern Lab Anim 36:215–242

    CAS  Google Scholar 

  70. Vonk JA, Benigni R, Hewitt M, Nendza M, Segner H, van de Meent D, Cronin MTD (2009) ATLA Altern Lab Anim 37:557–571

    CAS  Google Scholar 

  71. Cronin MTD, Bajot F, Enoch SJ, Madden JC, Roberts DW, Schwöbel JAH (2009) ATLA Altern Lab Anim 37:513–521

    CAS  Google Scholar 

  72. McKinney JD (1996) Environ Health Perspect 104:810–816

    Article  CAS  Google Scholar 

  73. Schwöbel JAH, Koleva YK, Enoch SJ, Bajot F, Hewitt M, Madden JC, Roberts DW, Schultz TW, Cronin MTD (2011) Chem Rev 111:2562–2596

    Article  CAS  Google Scholar 

  74. Stuper AJ, Brugger WE, Jurs PC (1979) Computer assisted studies of chemical structure and biological function. Wiley-Interscience, New York

    Google Scholar 

  75. Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Wiley, New York

    Google Scholar 

  76. Murray JS, Politzer PA (1994) General interaction properties function (GIPF): an approach to understanding and predicting molecular interactions. In: Politzer P, Murray JS (eds) Quantitative treatments of solute/solvent interactions. Elsevier, Amsterdam, pp 243–289

    Google Scholar 

  77. Hilal SH, Carreira LA, Karickhoff SW (1994) Estimation of chemical reactivity parameter and physical properties of organic molecules using SPARC. In: Politzer P, Murray JS (eds) Quantitative treatments of solute/solvent interactions. Elsevier, Amsterdam, pp 291–353

    Google Scholar 

  78. Abraham MH (1994) New solute descriptors for linear free energy relationships and quantitative structure-activity relationships. In: Politzer P, Murray JS (eds) Quantitative treatments of solute/solvent interactions. Elsevier, Amsterdam, pp 83–133

    Google Scholar 

  79. Abraham MH, Chadha HS, Dixon JP, Rafols C, Treiner C (1995) J Chem Soc Perkin Trans 2:887–894

    Google Scholar 

  80. Katritzky AR, Lobanov VS, Karelson M (1995) Chem Soc Rev 24:279–287

    Article  CAS  Google Scholar 

  81. Randic M, Razinger M (1996) On the characterization of three-dimensional molecular structure. In: Balaban AT (ed) From chemical topology to three-dimensional geometry. Plenum, New York, pp 159–236

    Google Scholar 

  82. Balaban AT (1997) J Chem Inf Comput Sci 37:645–650

    Article  CAS  Google Scholar 

  83. Lucic B, Trinajstic N (1999) J Chem Inf Comput Sci 39:121–132

    Article  CAS  Google Scholar 

  84. Katritzky AR, Maran U, Lobanov VS, Karelson M (2000) J Chem Inf Comput Sci 40:1–18

    Article  CAS  Google Scholar 

  85. Katritzky AR, Fara DC, Petrukhin RO, Tatham DB, Maran U, Lomaka A, Karelson M (2002) Curr Top Med Chem 2:1333–1356

    Article  CAS  Google Scholar 

  86. Grover M, Singh B, Bakshi M, Singh S (2000) Pharm Sci Technol Today 3(1):28–35

    Article  CAS  Google Scholar 

  87. Grover M, Singh B, Bakshi M, Singh S (2000) Pharm Sci Technol Today 3(2):50–57

    Article  CAS  Google Scholar 

  88. Leach AR (2001) Molecular modelling: principles and applications. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  89. Sippl W (2010) Recent advances in QSAR studies: challenges and advances. In: Puzyn T, Leszczynski J, Cronin MTD (eds) Computational chemistry and physics, vol 8. pp 103–125

    Google Scholar 

  90. Cramer RDIII, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  91. Jayatilleke PRN, Nair AC, Zauhar R, Welsh WJ (2000) J Med Chem 43:4446–4451

    Article  CAS  Google Scholar 

  92. Sippl W, Holtje HD (2000) J Mol Struct Theochem 503:31–50

    Article  CAS  Google Scholar 

  93. Hannongbua S, Nivasanond K, Lawtrakul L, Pungpo P, Wolschann P (2001) J Chem Inf Comput Sci 41:848–855

    Article  CAS  Google Scholar 

  94. Avery MA, Alvim-Gaston M, Rodrigues CR, Barreiro EJ, Cohen FE, Sabnis YA, Woolfrey JR (2002) J Med Chem 45:292–303

    Article  CAS  Google Scholar 

  95. Akamatsu M (2002) Curr Top Med Chem 12:1381–1394

    Article  Google Scholar 

  96. Aboye TL, Sobhia ME, Bharatam PV (2004) Bioorg Med Chem 12:2709–2715

    Article  CAS  Google Scholar 

  97. Bhongade BA, Gadad AK (2004) Bioorg Med Chem 12:2797–2805

    Article  CAS  Google Scholar 

  98. Amin EA, Welsh WJ (2006) J Chem Inf Model 46:1775–1783

    Article  CAS  Google Scholar 

  99. Kubinyi H (1997) Drug Discov Today 11:457–467

    Article  Google Scholar 

  100. Kubinyi H (1997) Drug Discov Today 12:538–546

    Article  Google Scholar 

  101. Roy K, Roy PP (2008) Chem Bio Drug Des 72:370–382

    Article  CAS  Google Scholar 

  102. Roy K, Roy PP (2009) Expert Opin Drug Metabol Toxicol 5:1245–1266

    Article  CAS  Google Scholar 

  103. jo de Brito MA, Rodrigues CR, Cirino JJV, de Alencastro RB, Castro HC, Albuquerque MG (2008) J Chem Inf Model 48:1706–1715

    Google Scholar 

  104. Singh HP, Chaturvedi AP, Sharma CS (2011) Int J Pharm Technol Res 3:231–236

    CAS  Google Scholar 

  105. Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M (2004) J Med Chem 47:45–55

    Article  CAS  Google Scholar 

  106. Lei B, Li J, Lu J, Du J, Liu H, Yao X (2009) J Agric Food Chem 57:9593–9598

    Article  CAS  Google Scholar 

  107. Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG (2008) Bioorg Med Chem 16:9957–9974

    Article  CAS  Google Scholar 

  108. Liu H, Huang X, Shen J, Luo X, Li M, Xiong B, Chen G, Shen J, Yang Y, Jiang H, Chen K (2002) J Med Chem 45:4816–4827

    Article  CAS  Google Scholar 

  109. Cheng F, Shen J, Luo X, Zhu W, Gu J, Ji R, Jiang H, Chen K (2002) Bioorg Med Chem 10:2883–2891

    Article  CAS  Google Scholar 

  110. Zuo Z, Luo X, Zhu W, Shen J, Shen X, Jiang H, Chen K (2005) Bioorg Med Chem 13:2121–2131

    Article  CAS  Google Scholar 

  111. Kothandan G, Gadhe CG, Madhavan T, Choi CH, Cho SJ (2011) Eur J Med Chem 46:4078–4088

    Article  CAS  Google Scholar 

  112. Hao M, Li Y, Wang Y, Yan Y, Zhang S (2011) J Chem Inf Model 51:2560–2572

    Article  CAS  Google Scholar 

  113. Diwan M, Hameed MA, Hamza A, Liu J, Zhan CG (2008) J Chem Inf Model 48:1760–1772

    Article  CAS  Google Scholar 

  114. Vilar SG, Cozza S, Moro S (2008) Curr Top Med Chem 8:1555–1572

    Article  CAS  Google Scholar 

  115. Hirokawa S, Imasaka T, Imasaka T (2005) Chem Res Toxicol 18:232–238

    Article  CAS  Google Scholar 

  116. Jäntschi L, Bolboacă SD, Sestraş RE (2010) J Mol Model 16:377–386

    Article  CAS  Google Scholar 

  117. Li F, Li X, Liu X, Zhang L, You L, Zhao J, Wu H (2011) Environ Toxicol Pharm 32:478–485

    Article  CAS  Google Scholar 

  118. Li Y, Wang T, Xin J, Du X (2011) Bioinformatics and biomedical engineering. In: 5th International conference on iCBBE, pp 1–4

    Google Scholar 

  119. Gupta SP, Babu MS, Sowmya S (1998) Bioorg Med Chem 6:2185–2192

    Article  CAS  Google Scholar 

  120. Chen KX, Xie HY, Li ZG, Gao JR (2008) Bioorg Med Chem Lett 18:5381–5386

    Article  CAS  Google Scholar 

  121. Liu Q, Zhou H, Liu L, Chen X, Zhu R, Cao Z (2011) BMC Bioinformatics 12:294

    Article  CAS  Google Scholar 

  122. Leonard JT, Roy K (2003) Drug Des Discov 18:165–180

    CAS  Google Scholar 

  123. Roy K, Leonard JT (2004) Bioorg Med Chem 12:745–754

    Article  CAS  Google Scholar 

  124. Leonard JT, Roy K (2004) QSAR Comb Sci 23:23–35

    Article  CAS  Google Scholar 

  125. Leonard JT, Roy K (2004) QSAR Comb Sci 23:387–398

    Article  CAS  Google Scholar 

  126. Roy K, Leonard JT (2005) QSAR Comb Sci 24:579–592

    Article  CAS  Google Scholar 

  127. Roy K, Leonard JT (2005) Bioorg Med Chem 13:2967–2973

    Article  CAS  Google Scholar 

  128. Roy K, Leonard JT (2005) J Chem Inf Model 45:1352–1368

    Article  CAS  Google Scholar 

  129. Roy K, Leonard JT (2006) Indian J Chem 45A:126–137

    CAS  Google Scholar 

  130. Leonard JT, Roy K (2006) Bioorg Med Chem 14:1039–1046

    Article  CAS  Google Scholar 

  131. Leonard JT, Roy K (2006) Bioorg Med Chem Lett 16:4467–4474

    Article  CAS  Google Scholar 

  132. Mandal AS, Roy K (2009) Eur J Med Chem 44:1509–1524

    Article  CAS  Google Scholar 

  133. Heravi MJ, Baboli MA, Shahbazikhah P (2008) Eur J Med Chem 43:548–556

    Article  CAS  Google Scholar 

  134. Shi LM, Fan Y, Myers TG, O’Connor PM, Paull KD, Friend SH, Weinstein JN (1998) J Chem Inf Comput Sci 38:189–199

    Article  CAS  Google Scholar 

  135. Helguera AM, Rodríguez-Borges JE, García-Mera X, Fernández F, Cordeiro MNDS (2007) J Med Chem 50:1537–1545

    Article  CAS  Google Scholar 

  136. Tan SJ, Yan YK, Lee PPF, Lim KH (2010) Future Med Chem 2:1591–1608

    Article  CAS  Google Scholar 

  137. Boyles JR, Baird MC, Campling BG, Jain N (2001) J Inorg Biochem 84:159–162

    Article  CAS  Google Scholar 

  138. Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307–320

    Article  CAS  Google Scholar 

  139. Centerwall CR, Goodisman J, Kerwood DJ, Dabrowiak JC (2005) J Am Chem Soc 127:12768–12769

    Article  CAS  Google Scholar 

  140. Kelter G, Sweeney NJ, Strohfeldt K, Fiebig H-H, Tacke M (2005) Anticancer Drugs 16:1091–1098

    Article  CAS  Google Scholar 

  141. Fichtner I, Pampillón C, Sweeney NJ, Strohfeldt K, Tacke M (2006) Anticancer Drugs 17:333–336

    Article  CAS  Google Scholar 

  142. Dyson PJ, Sava G (2006) Dalton Trans 16:1929–1933 and references therein

    Google Scholar 

  143. Jakupec MA, Galanski M, Arion VB, Hartinger CG, Keppler BK (2008) Dalton Trans 2:183–194

    Article  CAS  Google Scholar 

  144. Hannon MJ (2007) Pure Appl Chem 79:2243–2261

    Article  CAS  Google Scholar 

  145. Ott I, Gust R (2007) Archiv der Pharmazie 340:117–126

    Article  CAS  Google Scholar 

  146. Vessieres A Plamont MA, Cabestaing C, Claffey J, Dieckmann S, Hogan M, Mueller-Bunz H, Strohfeldt KA, Tacke M (2009) J Organomet Chem 694(6):874–879

    Google Scholar 

  147. Strohfeldt K, Tacke M (2008) Chem Soc Rev 37:1174–1187

    Article  CAS  Google Scholar 

  148. Gasser G, Ott I, Metzler-Nolte N (2011) J Med Chem 54:3–25

    Article  CAS  Google Scholar 

  149. Bohari MH, Srivastava HK, Sastry GN (2011) Org Med Chem Lett 1:3

    Article  Google Scholar 

  150. Díaz HG, Marrero Y, Hernández I, Bastida I, Tenorio E, Nasco O, Uriarte E, Castañedo N, Cabrera MA, Aguila E, Marrero O, Morales A, Pérez M (2003) Chem Res Toxicol 16:1318–1327

    Article  CAS  Google Scholar 

  151. Monteagudo MC, Díaz HG, Borges F, Dominguez ER, Cordeiro MNDS (2008) Chem Res Toxicol 21:619–632

    Article  CAS  Google Scholar 

  152. Shadnia H, Wright JS (2008) Chem Res Toxicol 21:1197–1204

    Article  CAS  Google Scholar 

  153. Turabekova MA, Rasulev BF (2004) Molecules 9:1194–1207

    Article  CAS  Google Scholar 

  154. Vlaia V, Olariu T, Vlaia L, Butur M, Ciubotariu C, Medeleanu M, Ciubotariu D (2009) Farmacia 57(4):511–522

    CAS  Google Scholar 

  155. Saquib M, Gupta MK, Sagar R, Prabhakar YS, Shaw AK, Kumar R, Maulik PR, Gaikwad A, Sinha S, Srivastava AK, Chaturvedi V, Srivastava R, Srivastava BS (2007) J Med Chem 50:2942–2950

    Article  CAS  Google Scholar 

  156. Ventura C, Martins F (2008) J Med Chem 51:612–624

    Article  CAS  Google Scholar 

  157. Prathipati P, Ma NL, Keller TH (2008) J Chem Inf Model 48(12):2362–2370

    Article  CAS  Google Scholar 

  158. Katritzky AR, Gordeevat EV (1993) J Chem Inf Comput Sci 33:835–857

    Google Scholar 

  159. Hawkins DM, Basak SC, Kraker JJ, Geiss KT, Witzmann FA (2006) J Chem Inf Model 46:9–16

    Article  CAS  Google Scholar 

  160. Basak SC, Natarajan R, Mills D, Hawkins DM, Kraker JJ (2006) J Chem Inf Model 46:65–77

    Article  CAS  Google Scholar 

  161. Könemann H (1981) Toxicology 19:209–221

    Article  Google Scholar 

  162. Schüürmann G (1990) Environ Toxicol Chem 9:417–428

    Article  Google Scholar 

  163. Cronin MTD, Dearden JC (1995) Quant Struct Activ Relat 14:1–7

    Article  CAS  Google Scholar 

  164. Veith GD, Mekenyanb OG, Ankleya GT, Call DJ (1995) Chemosphere 30:2129–2142

    Article  CAS  Google Scholar 

  165. Robert D, Carbo-Dorca R (1999) SAR QSAR Environ Res 10:401–422

    Article  CAS  Google Scholar 

  166. Katritzky AR, Tatham DB, Maran UJ (2001) Chem Inf Comput Sci 41:1162–1176

    Article  CAS  Google Scholar 

  167. Yu RL, Hu GR, Zhao YH (2002) J Environ Sci (China) 14:552–557

    CAS  Google Scholar 

  168. Salvito DT, Senna RJ, Federle TW (2002) Environ Toxicol Chem 21:1301–1308

    Article  CAS  Google Scholar 

  169. Ren S, Schultz TW (2002) Toxicol Lett 129:151–160

    Article  CAS  Google Scholar 

  170. Rose K, Hall LH (2003) SAR QSAR Environ Res 14:113–129

    Article  CAS  Google Scholar 

  171. Roy K, Ghosh GJ (2004) Chem Inf Comput Sci 44:559–567

    Article  CAS  Google Scholar 

  172. Hoover KR, Acree WE, Abraha MH (2005) Chem Res Toxicol 18:1497–1505

    Article  CAS  Google Scholar 

  173. Casalegno M, Sello G, Benfenati E (2006) Chem Res Toxicol 19:1533–1539

    Article  CAS  Google Scholar 

  174. Friesner RA, Beachy MD (1998) Curr Opin Struct Biol 8:257–262

    Article  CAS  Google Scholar 

  175. Cartier A, Rivail J-L (1987) Chemom Intell Lab Syst 1:335–347

    Article  CAS  Google Scholar 

  176. Gupta SP, Singh P, Bindal MC (1983) Chem Rev 83:633–649

    Article  CAS  Google Scholar 

  177. Franke R (1984) Theoretical drug design methods. Elsevier, Amsterdam, pp 115–123

    Google Scholar 

  178. Gupta SP (1987) Chem Rev 87:1183–1253

    Article  CAS  Google Scholar 

  179. Gupta SP (1991) Chem Rev 91:1109–1119

    Article  CAS  Google Scholar 

  180. Brown RE, Simas AM (1982) Theor Chim Acta 62:1–16

    Article  CAS  Google Scholar 

  181. Buydens L, Massart D, Geerlings P (1983) Anal Chem 55:738–744

    Article  CAS  Google Scholar 

  182. Gruber C, Buss V (1989) Chemosphere 19:1595–1609

    Article  Google Scholar 

  183. Bodor N, Gabanyi Z, Wong C-K (1989) J Am Chem Soc 111:3783–3786

    Article  CAS  Google Scholar 

  184. Murugan R, Grendze MP, Toomey JE Jr, Katritzky AR, Karelson M, Lobanov VS, Rachwal P (1994) Chemtech 24:17–23

    CAS  Google Scholar 

  185. Karelson M, Lobanov V, Katritzky AR (1996) Chem Rev 96:1027–1043

    Article  CAS  Google Scholar 

  186. Asatryan RS, Mailyan NS, Khachatryan L, Dellinger B (2002) Chemosphere 48:227–236

    Article  CAS  Google Scholar 

  187. Friesner RA, Dunietz BD (2001) Acc Chem Res 34:351–358

    Article  CAS  Google Scholar 

  188. Carloni P, Roethlisberger U, Parrinello M (2002) Acc Chem Res 35:455–464

    Article  CAS  Google Scholar 

  189. Andreoni W, Curioni A, Mordasini T (2001) IBM J Res Dev 45:397–407

    Article  CAS  Google Scholar 

  190. Raugei S, Gervasio FL, Carloni P (2006) Phys Stat Sol (b) 243:2500–2515

    Google Scholar 

  191. Robertazzi A, Magistrato A, Peraro MD, Carloni P (2011) Metallic systems: a quantum chemists’s perspective, Chap 1. Taylor and Francis Group, LLC, New York, pp 1–27

    Google Scholar 

  192. Segall MD (2002) J Phys Condens Matter 14:2957–2973

    Article  CAS  Google Scholar 

  193. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) Chem Rev 110:949–1017

    Article  CAS  Google Scholar 

  194. Sulpizi M, Folkers G, Rothlisberger U, Carloni P, Scapozza L (2002) Quant Struct Activ Relat 21:173–181

    Article  CAS  Google Scholar 

  195. Cao J, Jin S, Han B, Liu W, Zhao L, Zhong R (2010) 3rd International conference on biomedical engineering and informatics, pp 2374–2376

    Google Scholar 

  196. Bayat Z, Vahdani S (2011) J Chem Pharm Res 3(1):93–102

    CAS  Google Scholar 

  197. Chojnacki H, Kuduk-Jaworska J, Jaroszewicz I, Jański JJ (2009) J Mol Model 15:659–664

    Article  CAS  Google Scholar 

  198. Sarmah P, Deka RC J (2009) Comput Aid Mol Des 23:343–354

    Google Scholar 

  199. Sarmah P, Deka RC (2010) J Mol Model 16:411–418

    Article  CAS  Google Scholar 

  200. Arulmozhiraja S, Fujii T, Sato G (2002) Mol Phys 100:423–431

    Article  CAS  Google Scholar 

  201. Arulmozhiraja S, Fujii T, Morita M (2002) J Phys Chem A 106:10590–10595

    Article  CAS  Google Scholar 

  202. Wan J, Zhang L, Yang G (2004) J Comput Chem 25:1827–1832

    Article  CAS  Google Scholar 

  203. Arulmozhiraja S, Morita M (2004) J Phys Chem A 108:3499–3508

    Article  CAS  Google Scholar 

  204. Arulmozhiraja S, Morita M (2004) Chem Res Toxicol 17:348–356

    Article  CAS  Google Scholar 

  205. Wan J, Zhang L, Yang G, Zhan C-G (2004) J Chem Inf Comput Sci 44:2099–2105

    Article  CAS  Google Scholar 

  206. Xiu-Fen Y, He-Ming X, Xue-Hai J, Xue-Dong G (2005) Chin J Chem 23947–23952

    Google Scholar 

  207. Pasha FA, Srivastava HK, Singh PP (2005) Bioorg Med Chem 13:6823–6829

    Article  CAS  Google Scholar 

  208. Lameira J, Alves CN, Moliner V, Silla E (2006) Eur J Med Chem 41:616–623

    Article  CAS  Google Scholar 

  209. Yan X-F, Xiao H-M, Ju X-H, Gong X-D (2006) Huaxue Xuebao 64:375–380

    CAS  Google Scholar 

  210. Eroglu E, Türkmen H (2007) J Mol Graph Model 26:701–708

    Article  CAS  Google Scholar 

  211. Gu C, Jiang X, Ju X, Yu G, Bian Y (2007) Chemosphere 67:1325–1334

    Article  CAS  Google Scholar 

  212. Gu CG, Jiang X, Ju XH, Yang XL, Yu GF (2007) SAR QSAR Environ Res 18:603–619

    Article  CAS  Google Scholar 

  213. Zhao Y-Y, Tao F-M, Zeng EY (2007) J Phys Chem A 111:11638–11644

    Article  CAS  Google Scholar 

  214. Zhao YY, Tao F-M, Zeng EY (2008) Chemosphere 73:86–91

    Article  CAS  Google Scholar 

  215. Mehdipour AR, Safarpour MA, Taghavi F, Jamali M (2009) QSAR Comb Sci 28:568–575

    Article  CAS  Google Scholar 

  216. Wang Y, Chen J, Li F, Qin H, Qiao X, Hao C (2009) Chemosphere 76:999–1005

    Article  CAS  Google Scholar 

  217. Manzoni V, Lyra ML, Cavada BS, Neto NS, Freire VN (2011) Int J Quant Chem 111:1270–1279

    Article  CAS  Google Scholar 

  218. Elstner M, Frauenheim T, Suhai S (2003) J Mol Struct Theochem 632:29–41

    Article  CAS  Google Scholar 

  219. Elstner M (2006) Theor Chem Acc 116:316–325

    Article  CAS  Google Scholar 

  220. Putz MV, Lacrămă A-M (2007) Int J Mol Sci 8:363–391

    Article  CAS  Google Scholar 

  221. Putz MV, Lacrămă A-M, Ostafe V (2007) Res Lett Ecol. doi:10.1155/2007/12813

  222. Lacrămă A-M, Putz MV, Ostafe V (2007) Int J Mol Sci 8:842–863

    Article  Google Scholar 

  223. Putz MV, Duda-Seiman C, Duda-Seiman DM, Putz AM (2008) Int J Chem Model 1:45–62

    CAS  Google Scholar 

  224. Putz MV, Putz (Lacrămă) AM (2008)Studia Universitatis Babeş-Bolyai–Seria Chimia 53:73–81

    Google Scholar 

  225. Putz MV, Duda-Seiman D, Mancaş S, Duda-Seiman C, Lacrămă A-M (2008) Quantum and topological impact on HMG-CoA reductase inhibitors. In: Putz MV (ed) Advances in quantum chemical bonding structures, chap 15. Transworld Research Network, Kerala, pp 355–387

    Google Scholar 

  226. Lacrămă A-M, Putz MV, Ostafe V (2008) Designing a spectral structure–activity ecotoxico-logistical battery. In: Putz MV (ed) Advances in quantum chemical bonding structures, chap 16. Transworld Research Network, Kerala, pp 389–419

    Google Scholar 

  227. Putz MV, Putz A-M, Lazea Luciana M, Ienciu L, Chiriac A (2009) Int J Mol Sci 10:1193–1214

    Google Scholar 

  228. Chicu SA, Putz MV (2009) Int J Mol Sci 10:4474–4497

    Article  CAS  Google Scholar 

  229. Duda-Seiman C, Duda-Seiman D, Putz MV, Ciubotariu D (2007) Digest J Nanomater Biostruct 2:207–219

    Google Scholar 

  230. Ciubotariu D, Deretey E, Oprea TI, Sulea T, Simon Z, Kurunczi L, Chiriac A (1993) Quant Struct Activ Relat 12:367–372

    Article  CAS  Google Scholar 

  231. Simon Z, Chiriac A, Ciubotariu D, Muresan S, Bologa C, Sulea T, Kurunczi L (1996) Metoda MTD (The MTD method). In: Chiriac A, Ciubotariu D, Simon Z (eds) RelaŃii cantitative structură chimică – activitate biologică (QSAR) Metoda MTD (Quantitative chemical structure – biological activity relationships studies (QSAR). The MTD method), chap 5. Mirton Publishing House, Timisoara

    Google Scholar 

  232. Duda-Seiman C, Duda-Seiman D, Dragos D, Medeleanu M, Careja V, Putz MV, Lacrămă A-M, Chiriac A, Nuţiu R, Ciubotariu D (2006) Int J Mol Sci 7:537–555

    Article  CAS  Google Scholar 

  233. Latosińska JN (2004) Chem Phys Lett 398:324–329

    Article  CAS  Google Scholar 

  234. Latosińska JN (2005) J Pharm Biomed Anal 38:577–587

    Article  CAS  Google Scholar 

  235. Holzgrabe U, Diehl BWK, Wawer I (1998) J Pharm Biomed 17:557–616

    Article  CAS  Google Scholar 

  236. Kalinkova GN (1999) Vib Spectrosc 19:307–320

    Article  CAS  Google Scholar 

  237. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. Wiley, Chichester

    Google Scholar 

  238. Liu S-S, Liu H-L, Yin C-S, Wang L-S (2003) J Chem Inf Comput Sci 43:964–969

    Article  CAS  Google Scholar 

  239. Kaliszan R (2007) Chem Rev 107:3212–3246

    Article  CAS  Google Scholar 

  240. Lobato M, Amat L, Besalu´ E, Carbo´-Dorca R (1997) Quant Struct Activ Relat 16:465–472

    Google Scholar 

  241. Gallegos A, Gironés X (2005) J Chem Inf Model 45:321–326

    Article  CAS  Google Scholar 

  242. Roy K, Popelier PLA (2008) QSAR Comb Sci 27:1006–1012

    Article  CAS  Google Scholar 

  243. Roy K, Popelier PLA (2008) Bioorg Med Chem Lett 18:2604–2609

    Article  CAS  Google Scholar 

  244. Mekenyan OG, Veith GD (1993) SAR QSAR Environ Res 1:335–344

    Article  CAS  Google Scholar 

  245. Cronin MTD, Dearden JC, Duffy JC, Edwards R, Manga N, Worth AP, Worgan ADP (2002) SAR QSAR Environ Res 13:167–176

    Article  CAS  Google Scholar 

  246. Li Y, Wang T, Xin J, Du X (2011) 5th International conference on bioinformatics and biomedical engineering (iCBBE). Research Academy of Energy & Environmental Studies, North China Electronics Power University, Beijing, China, pp 1–4

    Google Scholar 

  247. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  248. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  249. Chattaraj PK (ed) (2009) Chemical reactivity theory: a density functional view. Taylor and Francis/CRC, Boca Raton, FL

    Google Scholar 

  250. Chattaraj PK, Giri S (2009) Ann Rep Prog Chem Sect C Phys Chem 105:13–39

    Article  CAS  Google Scholar 

  251. Chakraborty A, Duley S, Giri S, Chattaraj PK (2010) An understanding of the origin of chemical reactivity from a conceptual DFT approach. In: Sukumar N (ed) A matter of density: exploring the electron density concept in the chemical, biological, and materials sciences. Wiley, New York

    Google Scholar 

  252. Chattaraj PK (1992) J Indian Chem Soc 69:173–183

    CAS  Google Scholar 

  253. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  254. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  255. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley, Weinheim

    Google Scholar 

  256. Parr RG, Szentpaly Lv, Liu S (1999) J Am Chem Soc 121:1922–1924

    Google Scholar 

  257. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  258. Chattaraj PK, Roy DR (2007) Chem Rev 107:PR46–PR74

    Google Scholar 

  259. Chattaraj PK, Giri S, Duley S (2011) Chem Rev 111:PR43–PR75

    Google Scholar 

  260. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  261. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  262. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  263. Pauling L (1932) J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  264. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca, NY

    Google Scholar 

  265. Mulliken RS (1934) J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  266. Mulliken RS (1935) J Chem Phys 3:573–585

    Article  CAS  Google Scholar 

  267. Gyftopoulos EP, Hatsopoulos GN (1968) Proc Natl Acad Sci USA 60:786–793

    Article  CAS  Google Scholar 

  268. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  269. Pearson RG (1966) Science 151:172–177

    Article  CAS  Google Scholar 

  270. Pearson RG (1968) J Chem Educ 45:581–587

    Article  CAS  Google Scholar 

  271. Pearson RG (1968) J Chem Educ 45:643–648

    Article  CAS  Google Scholar 

  272. Pearson RG, Chattaraj PK (2008) Chemtracts Inorg Chem 21:1–7

    CAS  Google Scholar 

  273. Pearson RG (1987) J Chem Educ 64:561–567

    Article  CAS  Google Scholar 

  274. Chattaraj PK, Chakraborty A, Giri S (2009) J Phys Chem A 113:10068–10074

    Article  CAS  Google Scholar 

  275. Maynard AT, Huang M, Rice WG, Covel DG (1998) Proc Natl Acad Sci USA 95:11578–11583

    Google Scholar 

  276. Gázquez JL, Cedillo A, Vela A (2007) J Phys Chem A 111:1966–1970

    Article  CAS  Google Scholar 

  277. van Vleck J (1932) The theory of electric and magnetic susceptibilities. Oxford University Press, Oxford

    Google Scholar 

  278. Dalgarno A (1962) Adv Phys 11:281–315

    Article  CAS  Google Scholar 

  279. Pearson RG (1986) Proc Natl Acad Sci USA 83:8440–8441

    Article  CAS  Google Scholar 

  280. Politzer P (1987) J Chem Phys 86:1072–1073

    Article  CAS  Google Scholar 

  281. Ghanty TK, Ghosh SK (1993) J Phys Chem 97:4951–4953

    Article  CAS  Google Scholar 

  282. Fuentealba P, Reyes O (1993) J Mol Struct Theochem 282:65–70

    Article  Google Scholar 

  283. Pal S, Chandra AK (1995) J Phys Chem 99:13865–13867

    Article  CAS  Google Scholar 

  284. Ghanty TK, Ghosh SK (1996) J Phys Chem 100:12295–12298

    Article  CAS  Google Scholar 

  285. Vela A, Gázquez JL (1990) J Am Chem Soc 112:1490–1492

    Article  CAS  Google Scholar 

  286. Chattaraj PK, Poddar A (1998) J Phys Chem A 102:9944–9948

    Article  CAS  Google Scholar 

  287. Simon-Manso Y, Fuentealba P (1998) J Phys Chem A 102:2029–2032

    Article  CAS  Google Scholar 

  288. Chattaraj PK, Arun Murthy TVS, Giri S, Roy DR (2007) J Mol Struct Theochem 813:63–65

    Google Scholar 

  289. Parr RG, Yang W (1995) Annu Rev Phys Chem 46:701–728

    Article  CAS  Google Scholar 

  290. Ayers PW, Levy M (2000) Theor Chem Acc 103:353–360

    Article  CAS  Google Scholar 

  291. Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  292. Fukui K, Yonezawa T, Nagata C, Shingu H (1954) J Chem Phys 22:1433–1442

    Article  CAS  Google Scholar 

  293. Fukui K (1982) Science 218:747–754

    Article  CAS  Google Scholar 

  294. Fukui K (1975) Theory of orientation and stereoselection. Springer, Berlin

    Google Scholar 

  295. Yang W, Parr RG, Pucci R (1984) J Chem Phys 81:2862–2863

    Article  CAS  Google Scholar 

  296. Berkowitz M, Ghosh SK, Parr RG (1985) J Am Chem Soc 107:6811–6814

    Article  CAS  Google Scholar 

  297. Ghosh SK, Berkowitz M (1985) J Chem Phys 83:2976–2983

    Article  CAS  Google Scholar 

  298. Klopman G (1968) J Am Chem Soc 90:223–234

    Article  CAS  Google Scholar 

  299. Berkowitz M (1987) J Am Chem Soc 109:4823–4825

    Article  CAS  Google Scholar 

  300. Gázquez JL, Méndez F (1994) J Phys Chem 98:4591–4593

    Article  Google Scholar 

  301. Li Y, Evans JNS (1995) J Am Chem Soc 117:7756–7759

    Article  CAS  Google Scholar 

  302. Damoun S, Van de Woude G, Méndez F, Geerlings P (1997) J Phys Chem A 101:886–893

    Article  CAS  Google Scholar 

  303. Chattaraj PK (2001) J Phys Chem A 105:511–513

    Article  CAS  Google Scholar 

  304. Anderson JSM, Melin J, Ayers PW (2007) J Chem Theory Comput 3:358–374

    Article  CAS  Google Scholar 

  305. Méndez F, Gázquez JL (1994) J Am Chem Soc 116:9298–9301

    Article  Google Scholar 

  306. Li Y, Evans JNS (1996) Proc Natl Acad Sci USA 93:4612–4616

    Article  CAS  Google Scholar 

  307. Pérez P, Simon-Manso Y, Aizman A, Fuentealba P, Contreras R (2000) J Am Chem Soc 122:4756–4762

    Article  CAS  Google Scholar 

  308. Melin J, Aparicio F, Subramanian V, Galvan M, Chattaraj PK (2004) J Phys Chem A 108:2487–2491

    Article  CAS  Google Scholar 

  309. Chattaraj PK, Roy DR, Geerlings P, Torrent-Sucarrat M (2007) Theor Chem Acc 118:923–930

    Article  CAS  Google Scholar 

  310. Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973–4975

    Article  CAS  Google Scholar 

  311. Roy DR, Parthasarathi R, Padmanabhan J, Sarkar U, Subramanian V, Chattaraj PK (2006) J Phys Chem A 110:1084–1093

    Article  CAS  Google Scholar 

  312. Parthasarathi R, Padmanabhan J, Elango M, Subramanian V, Chattaraj PK (2004) Chem Phys Lett 394:225–230

    Article  CAS  Google Scholar 

  313. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  314. Chattaraj PK, Liu GH, Parr RG (1995) Chem Phys Lett 237:171–176

    Article  CAS  Google Scholar 

  315. Chattaraj PK (1996) Proc Indian Natl Sci Acad A 62:513–531

    CAS  Google Scholar 

  316. Ayers PW, Parr RG (2000) J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  317. Chattaraj PK, Fuentealba P, Gomez B, Contreras R (2000) J Am Chem Soc 122:348–351

    Article  CAS  Google Scholar 

  318. Pearson RG (1993) Acc Chem Res 26:250–255

    Article  CAS  Google Scholar 

  319. Parr RG, Zhou Z (1993) Acc Chem Res 26:256–258

    Article  CAS  Google Scholar 

  320. Chattaraj PK, Sengupta S (1996) J Phys Chem 100:16126–16130

    Article  CAS  Google Scholar 

  321. Chattaraj PK, Sengupta S (1997) J Phys Chem A 101:7893–7900

    Article  CAS  Google Scholar 

  322. Chattaraj PK, Fuentealba P, Jaque P, Toro-Labbé A (1999) J Phys Chem A 103:9307–9312

    Article  CAS  Google Scholar 

  323. Chamorro E, Chattaraj PK, Fuentealba P (2003) J Phys Chem A 107:7068–7072

    Article  CAS  Google Scholar 

  324. Parthasarathi R, Elango M, Subramanian V, Chattaraj PK (2005) Theor Chem Acc 113:257–266

    Article  CAS  Google Scholar 

  325. Tanwar A, Pal S, Roy DR, Chattaraj PK (2006) J Chem Phys 125:056101–056102

    Article  CAS  Google Scholar 

  326. Vijayaraj R, Subramanian V, Chattaraj PK (2009) J Chem Theory Comput 5:2744–2753

    Article  CAS  Google Scholar 

  327. Gaussian 98, Revision A.6. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  328. Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  329. Koopmans TA (1933) Physica 1:104–113

    Article  CAS  Google Scholar 

  330. Hirschfeld FL (1977) Theor Chim Acta 44:129–138

    Article  Google Scholar 

  331. DMOL3, Accelrys. Inc., San Diego, CA, USA

    Google Scholar 

  332. Chattaraj PK, Nath S, Maiti B (2003) Reactivity descriptors. In: Tollenaere J, Bultinck P, Winter HD, Langenaeker W (eds) Computational medicinal chemistry for drug discovery, Chap 11. Marcel Dekker, New York, pp 295–322

    Google Scholar 

  333. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2005) J Phys Chem A 109:11043–11049

    Article  CAS  Google Scholar 

  334. Thanikaivelan P, Subramanian V, Raghava Rao J, Nair BU (2000) Chem Phys Lett 323:59–70

    Google Scholar 

  335. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2003) J Phys Chem A 107:10346–10352

    Article  CAS  Google Scholar 

  336. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2004) Curr Sci 86:535–542

    CAS  Google Scholar 

  337. Parthasarathi R, Padmanabhan J, Subramanian V, Sarkar U, Maiti B, Chattaraj PK (2003) Internet Electron J Mol Des 2:798–813

    CAS  Google Scholar 

  338. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) J Am Chem Soc 118:6317–6318

    Google Scholar 

  339. Sarkar U, Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) J Mol Struct Theochem 758:119–125

    Article  CAS  Google Scholar 

  340. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) J Phys Chem A 110:2739–2745

    Article  CAS  Google Scholar 

  341. Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212

    Google Scholar 

  342. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Chem Res Toxicol 19:356–364

    Article  CAS  Google Scholar 

  343. Cronin MTD, Manga N, Seward JR, Sinks GD, Schultz TW (2001) Chem Res Toxicol 14:1498–1505

    Article  CAS  Google Scholar 

  344. Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Bioorg Med Chem 12:5533–5543

    Article  CAS  Google Scholar 

  345. Roy DR, Pal N, Mitra A, Bultinck P, Parthasarathi R, Subramanian V, Chattaraj PK (2007) Eur J Med Chem 42:1365–1369

    Article  CAS  Google Scholar 

  346. Giri S, Chakraborty A, Gupta A, Roy DR, Vijayaraj R, Parthasarathi R, Subramanian V, Chattaraj PK (2012) Modeling ecotoxicity as applied to some selected aromatic compounds: a conceptual DFT based quantitative-structure-toxicity- relationship (QSTR) analysis. In: Castro EA, Haghi AK (eds) Advanced methods and applications in chemoinformatics: research progress and new applications, Chap 1. Engineering Science Reference (an imprint of IGI Global), pp 1–24

    Google Scholar 

  347. Roy DR, Parthasarathi R, Maiti B, Subramanian V, Chattaraj PK (2005) Bioorg Med Chem 13:3405–3412

    Article  CAS  Google Scholar 

  348. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Bioorg Med Chem 14:1021–1028

    Article  CAS  Google Scholar 

  349. Pandith AH, Giri S, Chattaraj PK (2010) Org Chem Int. Doi:. doi:10.1155/2010/545087

  350. Gupta A, Chakraborty A, Giri S, Subramanian V, Chattaraj PK (2011) Int J Chemoinform Chem Eng 1:61–74

    CAS  Google Scholar 

  351. Roy DR, Giri S, Chattaraj PK (2009) Mol Div 13:551–556

    Article  CAS  Google Scholar 

  352. Hunter P (2009) EMBO Rep 10(2):125–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. Mihai V. Putz for inviting them to contribute a chapter in this book. P.K.C. thanks DST, New Delhi, for the J. C. Bose National Fellowship. S.P. thanks CSIR, New Delhi, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratim K. Chattaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chakraborty, A., Pan, S., Chattaraj, P.K. (2013). Biological Activity and Toxicity: A Conceptual DFT Approach. In: Putz, M., Mingos, D. (eds) Applications of Density Functional Theory to Biological and Bioinorganic Chemistry. Structure and Bonding, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32750-6_5

Download citation

Publish with us

Policies and ethics